Самодельный робот на микроконтроллере. Маленький самодельный робот. Какие существуют более специализированные функции микроконтроллера

Выбор микроконтроллера для создания вашего робота. Сначала нужно разобраться с понятием, что такое микроконтроллер и что он делает?

Микроконтроллер — это вычислительное устройство, способное выполнять программы (то есть последовательность инструкций).

Он часто упоминается как “мозг” или “центр управления” робота. Как правило, микроконтроллер отвечает за все вычисления, принятие решений и коммуникации.

Для того, чтобы взаимодействовать с внешним миром, микроконтроллер имеет ряд штырей или выводов для электрического распознавания сигнала. Так сигнал может быть включен на максимум (1/С) или минимум (0/выкл) с помощью инструкции программирования. Эти выводы также могут быть использованы для считывания электрических сигналов. Они поступают с датчиков или других приборов и определяют, являются сигналы высокими или низкими.

Большинство современных микроконтроллеров может также измерять напряжение аналоговых сигналов. Это сигналы, которые могут иметь полный диапазон значений вместо двух четко определенных уровней. Происходит это с помощью аналогового цифрового преобразователя (АЦП). В результате микроконтроллер может присвоить сигналу числовое значение в виде аналогового напряжения.Это напряжение не является ни высоким, ни низким и, как правило, находится в диапазоне 0 — 10 вольт.

Что может делать микроконтроллер?

Хотя микроконтроллеры могут показаться довольно ограниченными, на первый взгляд, многие сложные действия можно выполнять, используя контакты высокого и низкого уровня сигнала для программирования алгоритма. Тем не менее создавать очень сложные алгоритмы, такие как интеллектуальное поведение или очень большие программы, может быть просто невозможно для микроконтроллера из-за ограниченных ресурсов и ограничения в скорости.

Например, для того, чтобы заставит мигать свет, можно запрограммировать повторяющуюся последовательность. Так микроконтроллер включает высокий уровень сигнала, ждет секунду, превращает его низкий, ждет еще секунду и сначала. Свет подключен к выходному контакту микроконтроллера и в циклической программе будет мигать бесконечно.


Аналогичным образом, микроконтроллеры могут быть использованы для контроля других электрических устройств. В первую очередь таких как приводы (при подключении к контроллеру двигателя), устройства хранения (например, карты SD), WiFi или bluetooth-интерфейсы и т. д. Как следствие этой невероятной универсальностью, микроконтроллеры можно найти в повседневной жизни.

Практически в каждом бытовом приборе или электронном устройстве используется, по крайней мере, один микроконтроллер. Хотя часто используется и несколько микроконтроллеров. Например, в телевизорах, стиральных машинах, пультах управления, телефонах, часах, СВЧ-печах и многих других устройствах.

В отличие от микропроцессоров (например, центральный процессор в персональных компьютерах), микроконтроллер не требует периферийных устройств. Таких как внешняя оперативная память или внешнее устройство хранения данных для работы. Это означает, что хотя микроконтроллер может быть менее мощным, чем их коллеги ПК. Почти всегда разработка схем и продуктов, основанных на микроконтроллерах значительно проще и дешевле.Потому что требуется очень мало дополнительных аппаратных компонентов.

Важно отметить, что микроконтроллер может выдавать только очень небольшое количество электрической энергии через свои выходные контакты. Это означает, что к микроконтроллеру не получиться подключить мощный электродвигатель, соленоид, большое освещение, или любую другую большую нагрузку напрямую. Попытка сделать это может вывести контроллер из строя.

Какие существуют более специализированные функции микроконтроллера?

Специальное оборудование, встроенное в микроконтроллеры позволяет этим устройствам сделать больше, чем обычный цифровой ввод/вывод, базовые расчеты и принятие решений. Многие микроконтроллеры с готовностью поддерживает наиболее популярные протоколы связи, такие как UART (RS232 или другой), SPI и I2C. Эта функция невероятно полезна при общении с другими устройствами, такими как компьютеры, датчики, или другие микроконтроллеры.

Хотя эти протоколы можно реализовать вручную, всегда лучше иметь выделенное встроенное оборудование, которое заботится о деталях. Это позволяет микроконтроллеру сосредоточиться на других задачах и обеспечивает чистоту программы.


Аналого-цифровые преобразователи (АЦП), используются для преобразования аналоговых сигналов напряжения в цифровые. Там количество пропорционально величине напряжения, и это число может затем использоваться в программе микроконтроллера. Для того, чтобы выходное промежуточное количество энергии отличается от высокого и низкого, некоторые микроконтроллеры имеют возможность использовать широтно-импульсную модуляцию (ШИМ). Например, этот способ позволяет плавно изменять яркость свечения светодиода.

Наконец, в некоторые микроконтроллеры интегрирован стабилизатор напряжения. Это достаточно удобно, так как позволяет микроконтроллеру работает с широким диапазоном напряжения. Поэтому вам не требуется обеспечивать необходимые значения напряжений. Это также позволяет легко подключать различные датчики и другие устройства без дополнительного внешнего регулируемого источника питания.

Аналоговые или цифровые?

Какие нужно использовать входные и выходные сигналы зависит от поставленной задачи и условий. Например, если у вас стоит задача просто что-то включить или выключить, то вам достаточно чтобы сигнал на входном контакте микроконтроллера был цифровой. Двоичное состояние переключателя 0 или 1. Высокий уровень сигнала может быть 5 вольт, а низкий 0. Если же вам нужно измерить, например, температуру, то нужен аналоговый входной сигнал. Далее АЦП на микроконтроллере интерпретирует напряжение и преобразует его в числовое значение.


Как программировать микроконтроллеры?

Программирование микроконтроллеров стало более простым благодаря использованию современных интегрированных сред разработки IDE с полнофункциональными библиотеками. Они легко охватывают все наиболее распространенные задачи и имеют много готовых примеров кода.

В настоящее время микроконтроллеры могут быть запрограммированы на различных языках высокого уровня. Это такие языки как C, C++, С#, Ява, Python, Basic и другие. Конечно, всегда можно написать программу на ассемблере. Хотя это для более продвинутых пользователей с особыми требованиями (с намеком на мазохизм). В этом смысле, любой должен быть в состоянии найти язык программирования, который лучше всего соответствуют его вкусу и предыдущему опыту программирования.

Программировать микроконтроллеры становится еще проще, так как производители создают графические среды программирования. Это пиктограммы, которые содержат в себе несколько строк кода. Пиктограммы соединяются друг с другом. В результате создается программа визуально простая, но содержащая в себе большое количество кода. Например, одно изображение может представлять управление двигателем. От пользователя требуется только разместить пиктограмму там, где необходимо и указать направление вращения и обороты.


Разработанные микроконтроллерные платы достаточно удобны в эксплуатации. И их проще использовать долгое время. Они также обеспечивают удобные питание от USB и интерфейсы программирования. Следовательно, есть возможность подключаются к любому современному компьютеру.

Почему не использовать стандартный компьютер?

Очевидно, что микроконтроллер очень похож на процессор компьютера. Если это так, почему бы просто не использовать компьютер для управления роботом? Итак, что выбрать настольный компьютер или микроконтроллер?


По сути, в более продвинутых роботах, особенно тех, которые включают сложные вычисления и алгоритмы, микроконтроллер часто заменяются (или дополняются) стандартным компьютером. В настольном компьютере установлена материнская плата, процессор, оперативная память устройства (например, жесткий диск), видеокарта (встроенная или внешняя).

Дополнительно есть периферийные устройства, такие как монитор, клавиатура, мышь и т. д. Эти системы обычно дороже, физически больше, потребляют больше энергии. Основные отличия выделены в таблице ниже. Кроме этого они часто имеют больший функционал чем необходимо.

Как выбрать микроконтроллер правильно?

Если вы изучаете робототехнику, то вам понадобится микроконтроллер для любого робототехнического проекта. Для новичка, выбор правильного микроконтроллера может показаться сложной задачей. Особенно учитывая ассортимент, технические характеристики и области применения. Есть много различных микроконтроллеров доступны на рынке:

  • Ардуино
  • BasicATOM
  • BasicX
  • Lego EV3
  • и многие другие

Для того чтобы правильно выбрать микроконтроллер задайте себе следующие вопросы:

Какой микроконтроллер самый популярный для моего приложения?

Конечно, создание роботов и электронных проектов в целом-это не конкурс популярности. Очень хорошо если микроконтроллер имеет большую поддержку сообщества. И успешно используется в похожих или даже одинаковых ситуациях. В результате это может значительно упростить этап проектирования. Таким образом, вы могли бы извлечь пользу из опыта других пользователей, как среди любителей, так и среди профессионалов.

Участники сообществ конструкторов роботов делятся друг с другом результатами, кодами, картинками, видео, и подробно рассказывают об успехах и даже неудачах. Все это является доступными материалами и возможностью получать советы от более опытных пользователей. Следовательно, может оказаться очень ценным.

Есть какие-то особенные требования у вашего робота?

Микроконтроллер должен быть способен выполнять все специальные действия вашего робота, чтобы функции исполнялись правильно. Некоторые особенности являются общими для всех микроконтроллеров (например, наличие цифровых входов и выходов, возможность выполнять простые математические действия, сравнение значений и принятие решений).

Возможно другим контроллерам требуется специфическое оборудование (например, АЦП, ШИМ, и коммуникационный протокол поддержки). Также требования к памяти и скорости, а также число выводов должны быть приняты во внимание.

Какие компоненты доступны для конкретного микроконтроллера?

Может быть ваш робот имеет специальные требования или необходим конкретный датчик или компонент. И это имеет решающее значение для вашего проекта. Следоваетльно выбор совместимого микроконтроллера, безусловно, очень важен.

Большинство датчиков и компонентов может взаимодействовать напрямую со многими микроконтроллерами. Хотя некоторые комплектующие предназначены для взаимодействия с конкретным микроконтроллером. Возможно они будут уникальными и несовместимыми другими типами микроконтроллеров.

Что нас ждет в будущем?

Цена на компьютеры резко идет вниз, и достижения в области технологии делают их меньше и эффективнее. В результате одноплатные компьютеры стали привлекательным вариантом для роботов. Они могут работать с полноценной операционной системой (Windows и Linux являются наиболее распространенными).

Дополнительно компьютеры могут подключаться к внешним устройствам, таким как USB-устройства, жидкокристаллические дисплеи и т. д. В отличие от своих предков, эти одноплатные компьютеры, как правило, значительно меньше потребляют электроэнергии.

Практическая часть

Для того чтобы выбрать микроконтроллер составим список нужных нам критериев:

  • Стоимость микроконтроллера должна быть низкой
  • Он должен быть простым в использовании и хорошо поддерживаться
  • Важно наличие доступной документации
  • Он должен программироваться в графической среде
  • Он должен быть популярен и иметь активное сообщество пользователей
  • Так как наш робот будет использовать два двигателя и различные датчики, то микроконтроллеру понадобится как минимум два порта для управления двигателями и несколько портов для подключения датчиков. Также должна быть возможность для расширения количества подключаемых устройств в будущем.

Этим критериям соответствует модуль EV3 из набора Lego Mindstorms EV3.


Обзор модуля EV3

Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) – микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 – у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК



Схема робота

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание – залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 – она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.
Теперь мы можем заняться нашим микроконтроллером. Корпус у МК - DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания – это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря – глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.
О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.


Плата моего робота

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема – L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы – подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND - их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор – он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех - от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.


Первый вариант датчиков моего робота

Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

#include
#include

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;

Значение 0xFF означает, что на выходе будет лог. «1», а 0x00 – лог. «0».

Следующей конструкцией мы проверяем, есть ли перед роботом препятствие и с какой оно стороны:

If (!(PINB & (1< {
...
}

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза – справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер – простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию – уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков – установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.
Список компонентов:
  • ATmega16 в корпусе DIP-40>
  • L7805 в корпусе TO-220
  • L293D в корпусе DIP-16 х2 шт.
  • резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.
  • конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ
  • конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.
  • диод 1N4001 или 1N4004
  • кварцевый резонатор на 16 МГц
  • ИК-диоды: подойдут любые в количестве двух штук.
  • фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей
Код прошивки:
/*****************************************************
Прошивка для робота

Тип МК: ATmega16
Тактовая частота: 16,000000 MHz
Если у тебя частота кварца другая, то это нужно указать в настройках среды:
Project -> Configure -> Закладка "C Compiler"
*****************************************************/

#include
#include

Void main(void)
{
//Настраиваем порты на вход
//Через эти порты мы получаем сигналы от датчиков
DDRB=0x00;
//Включаем подтягивающие резисторы
PORTB=0xFF;

//Настраиваем порты на выход
//Через эти порты мы управляем двигателями
DDRC=0xFF;

//Главный цикл программы. Здесь мы считываем значения с датчиков
//и управляем двигателями
while (1)
{
//Едем вперёд
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
}
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 1;
PORTC.3 = 0;
delay_ms(1000);
}
};
}

О моём роботе

В данный момент мой робот практически завершён.


На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

По пожеланиям выкладываю видео:

UPD. Перезалил фотографии и сделал небольшие поправки в тексте.

Решил плавно перейти к динамичным движущимся моделям. Это проект маленького самодельного робота на ИК-управлении, собранного из простых и доступных для приобретения деталей. В основе - два микроконтроллера. Передачу с пульта ДУ обеспечивает PIC12F675 , а приёмная часть к контроллером моторчиков реализована на PIC12F629 .

Схема робота на микроконтроллере

С цифровой частью всё вышло гладко, проблема была только в "двигательной установке" - маленьких редукторах, которые сделать в домашних условиях очень проблематично, поэтому пришлось развить идею "виброжуков ". Управление микромоторами осуществляется через усилительные транзисторные ключи на BC337. Они заменимы на любые другие небольшие транзисторы n-p-n с током коллектора от 0,5 А.

Размеры получились очень маленькие - на фото сравнение его с монетой и ещё возле спичечного коробка. Глаза робота сделаны из сверхярких светодиодов, засунутых в корпус небольших электролитических конденсаторов.

Обсудить статью МАЛЕНЬКИЙ САМОДЕЛЬНЫЙ РОБОТ

26.01.2011, 09:18
Источник:

Обычно, в статьях, я стараюсь излагать материал в порядке его разработки, но думаю, что это не тот случай. Поэтому, пропустим этапы проектирования принципиальной электрической схемы, разводки печатной платы и всего прочего. На рисунке 1 смотрим какое «безобразие» у меня получилось.

С первого взгляда кажется просто нагромождением железа, электроники и проводов. Наверное, это потому, что в ход пошли куски разнородных материалов. Давайте разбираться.

Теперь все по порядку. На микроконтроллер Attiny2313 с двух инфракрасных датчиков поступает сигнал о препятствии (логическая единица или нуль). Затем, согласно, прошивки микроконтроллер управляет микросхемой драйвер двигателя L293D (ток управления до 1 Ампера). На рисунке 3 представлена фотография перевернутого робота.

Основой конструкции самодельного робота является согнутая в трапецию металлическая полоска. Угол изгиба порядка 120°. Принципиально важно, чтобы с обеих сторон получился одинаковый изгиб, иначе робот будет двигаться не прямолинейно. Хотя, с другой стороны, что плохо сделал механик или электроник, иногда может загладить программист, скажем, с помощью ШИМ добиться прямолинейного движения робота

Из курса школьной геометрии все мы знаем, что плоскость образуется или тремя точками или прямой и точкой в пространстве. Третей точкой является свободно вращающееся роликовое колесо.

Приемники ИК-датчиков, фототранзисторы находятся снизу, дабы снизить засветку и свести к минимуму ложное срабатывание. Сами ИК-датчики крепятся на подвижных шарнирах, что позволяет производить настройку зоны сканирования. Интересная, кстати, реакции была моего кота на ползающего робота в коридоре?. Кот у меня черный. ИК-датчики я настраивал серого цвета обои, поэтому робот поворачивал перед котом почти в самый последний момент, а кот отпрыгивал на шаг назад с громким шипением.

Следующий моддингом для роботы стали ИК-датчики на его пузе, позволяющие роботу следовать по черной линии, нарисованной на белой бумаге маркером. Для реализации потребовалось три датчика и компаратор на микросхеме LM339N, чтобы разгрузить микроконтроллер. Существенным минусом оказалось, необходимая предварительная настройка датчиков подстроечными резисторами в зависимости от освещения в помещении.

P.S. Наградой за потраченное время на создание бессмысленного устройства, пожалуй, будет наглядность работы микроконтроллера и память которая будет пылиться на полке, до тех пор пока ей может быть не заинтересуется чей то ребенок.

Лет так 20 назад, когда я был студентом ЧПТ и работал на практике на Станкомаше (это отдельная эпичная история красочно описанная в моем блоге), то в послеобеденное время, как и положено добропорядочному студенту, отлынивал от работы, шараебясь в поисках ништяков по многочисленным внутренним промышленным свалкам, что щедро были рассыпаны возле каждого заброшенного цеха, а то и внутри цехов;) Чего там только ни было, но в основном, всякий чермет. Цветмет, включая обмотки движков, спиздили еще задолго до меня.

Я же искал разбитую электронику, порой в ней находились россыпи конденсаторов КМ, ЭТО и прочих редкоземельных ништяков, которые в скупке лихо шли по 800 баксов за кило (зарплата тогда была баксов сто, да и платили ее раз в пол года), а местным работягам мозгов хватало разве что забрать алюминиевые радиаторы да медные шинки. В общем, попалась мне на глаза стойка от ЧПУ станка эпохи автоматизации и ускорения 80х годов перестройки.

Это был Роботрон, огромный гроб из 2мм железа. Мне кажется он мог бы выдержать даже очередь из автомата Калашникова, несмотря на то, что он простреливает рельс. Платы были раскрошены при попытке выломать радиаторы, а вот пятидюймовый дисковод был цел, несмотря на цельнолитое алюминиевое шасси. Что меня удивило, так это то, что привод блинов был не от трехфазного синхронного двигателя, как на более поздних дисководах.

Хрен там! Шпиндель вращался коллекторным движком через пассик. Ого, подумал я. Если на такую точную задачу поставили коллекторник, то это должен быть воистину охренительный коллекторник.


Попала в мои цепкие рученки одна интересная деталька. Трехосевой цифровой акселерометр, совмещенный с цифровым магнитометром, чувствительностью до 1.5 Гаусса. К слову, сила магнитного поля Земли около 0.4 Гаусса. Почти треть диапазона, так что из этой фиговины может получится вполне годный электронный компас. К слову, цена вопроса всего 350р за микросхему. Вполне по божески, учитывая набортный фарш и чувствительность этой микросхемы.

Микросхема LSM303DLH
Особо любопытно выглядит пузико — натуральная печатная плата. С дорожками и переходными дырками. Сразу расхотелось делать под ней дорожки. А то какая-нибудь заусеница на дорожке проковыряет лак на пузе и коротнет не туда.


Что еще не понравилось — контактные площадки не видно с торцов. Позиционировать и проверять точность запайки сложно. В этом плане QFN корпуса удобней.


Размером корпус 5х5 мм. Как тетрадная клеточка. Ужас:)

При построении разных роботов порой приходится использовать несколько сервоприводов. А если это какой-нибудь шестиногий паук, то приводов там этих просто тьма. Как ими управлять? На форуме кое кто даже сокрушался, что ему бы для этих целей плисину применить. Хотя на кой черт там ПЛИСка, когда с рулением даже трех десятков сервоприводов справится самый рядовой микроконтроллер, затребовав под это дело всего один таймер.

Итак, кто не помнит как управляются сервы может прогуляться в и освежить знания.

Возьмем, для начала, 8 сервомашинок. На каждую серву идет вот такой сигнал:


На каждую серву со своей ноги контроллера должна идти такая вот последовательность. Итого подобие ШИМ’a на 8 каналов. Как сгенерировать эту бодягу? Да проще простого. Принцип тут простой. Импульсы медленные — всего то 50Гц, меняются тоже нечасто — серва штука инерционная, поэтому даже сто раз в секунду ей не подергаешь. Так что времени на обработку у нас вагон и маленькая тележка.

Сами импульсы будут генерироваться одним таймером, в фоновом режиме. Принцип генерации прост: Все импульсы стартуют одновременно, выставляя свои уровни в 1.
Затем в таймер, в регистр сравнения, заносится время длительности первого импульса. По прерыванию сравнения происходит:

  • Сброс бита на порту первого канала
  • Загрузка в регистр сравнения таймера значения длительности второго импульса

Это очередной робоконструктор — механическая рука с пятью степенями свободы. Velleman Robotic Arm KSR10
Штука довольно редко встречающася, т.к. на Ebay я нашел всего одного продавца и в exUSSR эта редиска слать не желает. Встречается в нескольких буржуйских магазинах и вроде бы была в ЧиД, но оттуда была выкуплена нами:) Цена вопроса от 60…100 баксов.

Сам агрегат это очередная продвинутая игрушка, но для баловства и отработки алгоритмов нам больше и не требуется.

Часто требуется делать большие последовательности сложных операций — например полетное задание для робота. Да, можно запихать все это дело в основную программу, но вдруг что то пойдет не так как надо и алгоритм надо будет переделать — придется переделывать всю программу.

Тут на помощь придет виртуальная машина. Суть в чем — в памяти контроллера, в основную программу, занесены основные процедуры управления устройством. Если это робот, то это могут быть такие простые команды как «вперед», «назад», «повернуть» и так далее.

Потом нам нужен обработчик скриптов, который бы брал откуда нибудь, нашу последовательность действий — скрипт и преобразовывал это в вызовы реальных кусков кода -микрооперации.
Обработчик скриптов может быть той же самой задачей диспетчера, запущенной фоном. А откуда он будет брать данные неважно. Их вполне можно засасывать по usart или тащить из EEPROM памяти. А можно загнать на IIC память и получится сменный картридж:)

Фирма Inex Global кроме робоконструкторов барыжит еще и прикольными мотор-редукторами. Теми самыми, что стоят в и . В Челябинск их периодически таскает . Я прикупил парочку на пробу, есть у меня одна задумка на их счет, но об этом несколько позже;)

Пока же расскажу о самом движке. Бывают они двух моделей IE-BO2-120M и IE-BO2-48M , отличаются друг от друга передаточным отношением редуктора 1:120 и 1:48.

Помните я обещал русский мануал к ? Так вот, я не успел и конструктор смели с прилавков быстрей чем я договорился выцыганить книжку на сканирование. Однако Bschepan , один из довольных обладателей этой игрушки, сделал доброе дело и выложил скан упиханый в DejaVu.

Когда на раскачку нагрузки мощности одного транзистора не хватает, то применяют составной транзистор (транзистор Дарлингтона). Тут суть в том, что один транзистор открывает другой. А вместе они работают как единый транзистор с коэффициентом усиления по току равным произведению коэффициентов первого и второго транзов.

Если взять, например, транзистор MJE3055T у него максимальный ток 10А, а коэффициент усиления всего около 50, соответственно, чтобы он открылся полностью, ему надо вкачать в базу ток около двухста миллиампер. Обычный вывод МК столько не потянет, а если влючить между ними транзистор послабже (какой-нибудь BC337), способный протащить эти 200мА, то запросто. Но это так, чтобы знал. Вдруг придется городить управление из подручного хлама — пригодится.

На практике обычно используются готовые транзисторные сборки . Внешне от обычного транзистора ничем не отличается. Такой же корпус, такие же три ножки. Вот только мощи в нем больно дофига, а управляющий ток микроскопический:) В прайсах обычно не заморачиваются и пишут просто — транзистор Дарлигнтона или составной транзистор.

Тем временем, в Казахстане ударными темпами продолжается разработка киборга оригинальной конструкции на базе контроллера PIC , о чем SWG очень активно отписывается в комментарии к постам о своем роботе.

Попутно скидывая мне мылом некоторые свои наработки.

SWG:

На всяк случай посылаю кое-что из последнего. Программки еще не доделал,закончу с обменом, отлажу, тогда уж вышлю нормальные.

Под бамперами будет крепиться пластина толщиной миллиметров 10 из довольноплотного поролона или даже микропористой резины, пока еще не решил, пробую разные материалы. Надо чтобы был мягкий, но не очень. Будет выступать запределы плат миллиметров на 10-15, защищая светодиоды подсветки и сами платы. Пока просто положил платы бамперов в коробку, чтобы показать общуюкомпоновку.

Определившись с размещением и креплением плат, сделаю соединительные шлейфики из МГТФ, оптимальной длины, чтобы зря не болтались,но и не в натяжку. Прикидываю также варианты, конструкцию и размещение датчиков одометров, и оборудования, которое будет установлено в будущем,чтобы по нескольку раз не переделывать.

На платах бамперов синие колодочки снизу — датчики пола с фоторезисторами ибелыми светодиодами подсветки. (Сделал из клеммников, слегка рассверлив их местами). Прозрачные светодиоды сверху — подсветка ИК локатора на TSOP (стоят посредине, вверх ногами).Черные кубики на внутренних углах — оптопары на отражение датчиков столкновения. Над ними к боковым стенкам будуткрепиться угольники — шторки с белой областью на черном фоне или отверстием определенной формы.

Когда уже платы были готовы, подумал, что можно было припаять оптопары не сверху, а снизу платы, и нарисовать нужные фигуры прямо на дне коробки. Вообще — то это и сейчас еще не поздно сделать, пока еще не решил. Тем более, что в библиотеку я по запарке тоже занес их зеркально, и при запайке пришлось загнуть ноги под ними для правильной распайки, а снизу они встанут правильно. В общем, накопилась куча мелочей, на обдумывание которых бесполезно уходит время. («Тирания альтернатив»). С пересылкой состояния датчиков тоже вроде все просто, но когда начинаешь добавлять кучу всяких защит от всего, и проверок правильности функционирования, все обрастает, как снежный ком, постоянно приходится все проверять на возможные и невозможные ситуации, чтобы все нормально отрабатывало. Слишком велика будет цена падения, например, в открытый люк, а постоянно закрывать все дырки и двери — тоже не выход… Но и сильно перестраховавшись, можно вообще никогда не стронуться с места.

ДПМ-25-Н1-7Т с редукторами (27v, но неплохо тянут уже при 12, надо будет больше — сделаю преобразователь 12->27 ), и самодельный поворотный узел с роликом (третье колесо).

Потребление от 12v: 33 мА при выкл. двигателях, при макс. скорости без нагрузки (колеса не касаются пола) = 103 мА вперед, 115 мА назад. При одном заклиненном колесе — 300 мА, при обоих заклиненных колесах = 500 мА.
L293DN чуть теплая. Будет греться — приклею радиатор. Да, частоту ШИМ взял пока 500 Гц. (период 2 мс). Померяю скорость нарастания тока в двигателях — определю более оптимальную (За самый короткий импульс ток в двигателе должен успеть достигнуть максимума).
Максимальная скорость движения по полу сейчас 15-20 см/сек. Больше мне пока ни к чему, слишком быстро будет комнату пробегать. Диаметр колес = 80мм (резиновые “бублики” вроде от какой-то сантехники, полно на базаре).

Честно говоря, я был сильно удивлен когда нагуглил характеристики движка ДПМ

Блок питания.
У нас же стоит свинцовый аккумулятор на 12 вольт, а контроллеру нужно 5 вольт. Вот я и сварганил импульсный блок питания. Можно было, конечно, поставить какой нибудь LM7805 (как у меня на макетке) и на нем сбросить напряжение, но это тупой метод. Дело все в том, что разницу напряжений LM7805 отрыгнет в виде тепла. Так что КПД данного девайса будет ниже 50% , а питание у нас батарейное. Так что выход один — это DC-DC преобразование. В качестве контроллера взял проверенный временем, популярный, доступный и дешевый MC33063A . Изобретать ничего не стал и взял типовую понижающую схему (Step — Down ) из его даташита. Как работает схема этого блока питания я расскажу несколько позже, отдельным постом. После выхода статьи в «Хакер», где я толкнул статью про источники питания.



gastroguru © 2017