Эффективная длительность и эффективная ширина спектра сигнала. Спектр излучения радиосигнала Что такое ширина спектра электрического сигнала

Теоретически ряд Фурье содержит бесконечное количество слагаемых, поэтому теоретически ширина спектра бесконечна. Поэтому для таких сигналов вводится понятие практической ширины спектра. Если полоса пропускания какого-либо устройства недостаточно широка, чтобы пропустить все гармоники, существенно влияющие на форму сигнала, то сигнал на выходе этого устройства исказится. Ширина полосы пропускания устройства не должна быть уже ширины спектра сигнала.

Существуют несколько критериев для определения практической ширины спектра сигнала:

1. Можно отбрасывать все гармоники с амплитудами меньшими 1 % максимальной амплитуды в спектре. Тогда частота гармоник и определит ширину спектра сигнала ( ω С ):

2. Энергетический критерий. Можно отбрасывать те гармоники, суммарная мощность которых меньше 10 % общей мощности сигнала. В этом случае ширину спектра также определяют оставшиеся в сигнале гармоники.

Однако независимо от критерия, по которому определяют ширину спектра сигнала, можно выделить закономерности, общие для всех сигналов:

чем круче фронт сигнала, чем короче импульсы,

чем больше пауза между импульсами, тем шире спектр сигнала, т. е. тем медленнее убывают амплитуды гармоник с ростом их номера.

Распределение мощности сигнала по гармоникам

Периодические сигналы характеризуются средней мощностью за период:

.

Если s – это напряжение или ток, то P – это мощность на сопротивлении 1 Ом.

Вместо s ( t ) можно подставить ряд Фурье:

,

,

где
- мощность постоянной составляющей,

- мощность n -й гармоники.

Средняя мощность периодического сигнала равна сумме мощности постоянной составляющей P 0 и сумме средних мощностей каждой гармоники P n .

,

где N – кол-во учитываемых (пропускаемых устройством) гармоник. Например,
, если ∆P = 90 % от полной мощности сигнала.

Практическая ширина спектра при этом равна

,

где N – номер высшей учитываемой гармоники, т. е. практическая ширина спектра равна высшей учтенной гармонике.

Требуемые полосы пропускания для различных задач:

Спектральный анализ непериодических сигналов

Спектральный анализ непериодических сигналов – это описание и исследование свойств непериодических сигналов в частотной области. Спектральный анализ непериодических сигналов проводится на основе интегральных преобразований Фурье.

Прямое преобразование Фурье:

где - величина комплексная.

Прямое преобразование Фурье дает переход от временной модели сигнала к частотной модели

[
]
.

Обратное преобразование Фурье:

Обратное преобразование Фурье восстанавливает сигнал по его частотной модели [
]
.

Эта пара преобразований Фурье устанавливает взаимно-однозначное соответствие между двумя моделями сигнала – временной и частотной моделями:

.

Функция
- это “спектральная плотность ”, или “спектральная функция ”, или, просто, спектр непериодического сигнала s (t ) . Так как
- непрерывная функция частоты, то спектр непериодического сигнала является непрерывным спектром (в отличие от дискретного спектра периодических сигналов).

в общем случае является комплексной функцией и может быть представлена в показательной форме:

Различают амплитудный и фазовый спектры непериодического сигнала.

Амплитудный спектр – это частотное распределение модуля спектральной плотности:

Фазовый спектр – это частотное распределение фаз (аргументов) спектральной плотности:

.

Амплитудный спектр – это четная функция частоты, т. е.
. Фазовый спектр – это нечетная функция частоты, т. е.
.

Пример спектральной диаграммы:

Амплитудный спектр

Фазовый спектр

Литература: [Л.1], с 50-51

[Л.2], с 65-66

[Л.3], с 24-25

Для решения практических задач радиотехники крайне важно знать значения длительности и ширины спектра сигнала, а также соотношение между ними. Знание длительности сигнала позволяет решать задачи эффективного использования времени, предоставляемого для передачи сообщений, а знание ширины спектра – эффективного использования диапазона радиочастот.

Решение указанных задач требует строгого определения понятий «эффективная длительность» и «эффективная ширина спектра». На практике существует большое число подходов к определению длительности. В том случае, когда сигнал ограничен во времени (финишный сигнал), как это имеет место, например, для прямоугольного импульса, определение длительности не встречает затруднений. Иначе обстоит дело, когда теоретически сигнал имеет бесконечную длительность, например, экспоненциальный импульс

В этом случае в качестве эффективной длительности может быть принят интервал времени , в течение которого значение сигнала . При другом способе в качестве выбирают интервал времени, в течение которого . То же самое можно сказать и в отношении определения эффективной ширины спектра .

Хотя в дальнейшем, некоторые из этих способов будут использоваться при анализе радиотехнических сигналов и цепей, следует отметить, что выбор способа существенно зависит от формы сигнала и структуры спектра. Так для экспоненциального импульса более предпочтителен первый из указанных способов, а для сигнала колоколообразной формы – второй способ.

Более универсальным является подход, использующий энергетические критерии. При таком подходе в качестве эффективной длительности и эффективной ширины спектра рассматриваются соответственно интервал времени и диапазон частот, в пределах которых сосредоточена подавляющая часть энергии сигнала

, (2.52)

, (2.53)

где – коэффициент, показывающий, какая часть энергии сосредоточена в интервалах или . Обычно величину выбирают в пределах .

Применим критерии (2.52) и (2.53) для определения длительности и ширины спектра прямоугольного и экспоненциального импульсов. Для прямоугольного импульса вся энергия сосредоточена в интервале времени или , поэтому его длительность . Что касается эффективной ширины спектра, то установлено, что более 90% энергии импульса сосредоточено в пределах первого лепестка спектра. Если рассматривать односторонний (физический) спектр импульса, то ширина первого лепестка спектра составляет в круговых частотах или в циклических частотах. Отсюда следует, что эффективная ширина спектра прямоугольного импульса равна

Перейдем к определению и экспоненциального импульса. Полная энергия импульса составляет

.

Воспользовавшись (2.52), получим

.

Вычислив интеграл в левой части уравнения и решив его, можно прийти к следующему результату

.

Спектр экспоненциального импульса найдем, воспользовавшись преобразованием Фурье

,

откуда следует

.

Подставляя это выражение в (2.53) и решая уравнение, получим

.

Найдем произведение эффективной длительности на эффективную ширину спектра. Для прямоугольного импульса это произведение составляет

,

или для циклических частот

.

Для экспоненциального импульса

Таким образом, произведение эффективной длительности на эффективную ширину спектра одиночного сигнала есть постоянная величина, зависящая только от формы сигнала и величины коэффициента . Это означает, что при уменьшении длительности сигнала его спектр расширяется и наоборот. Этот факт уже отмечался пи рассмотрении свойства (2.46) преобразования Фурье. На практике это означает, что невозможно сформировать короткий сигнал, обладающий узким спектром, что является проявлением физического принципа неопределенности .

Из предыдущих параграфов уже ясно, что чем меньше длительность сигнала, тем шире его спектр. Для установления количественных соотношений между указанными параметрами сигнала необходимо условиться об определении понятий длительность сигнала и ширина его спектра. В практике применяются различные определения, выбор которых зависит от назначения сигнала, его формы, а также от структуры спектра. В некоторых случаях выбор является произвольным. Так, ширину спектра прямоугольного импульса определяют либо как основание главного лепестка (например, в п. 1 § 2.10), либо на уровне от максимального значения спектральной плотности. Длительность колоколообразного импульса (см. § 2.10, п. 3) и ширину его спектра иногда определяют на уровне 0,606 от максимального значения соответственно или . Часто пользуются энергетическим критерием, понимая под шириной спектра полосу частот, содержащую заданную долю полной энергии сигнала.

Для практики важное значение имеет также оценка протяженности «хвостов» спектра вне полосы частот, содержащей основную часть энергии сигнала.

1. ОПРЕДЕЛЕНИЕ ПРОИЗВЕДЕНИЯ ПОЛОСА Х ДЛИТЕЛЬНОСТЬ

Для выявления предельных соотношений, связывающих длительность сигнала и ширину спектра, в современной теории сигналов большое распространение получил метод моментов.

По аналогии с понятием момента инерции в механике эффективную длительность сигнала можно определить выражением

где середина импульса определяется из условия

Имеется в виду, что функция интегрируема с квадратом (сигнал с конечной энергией).

Аналогично эффективная ширина спектра определяется выражением

Так как модуль спектра не зависит от смещения во времени, можно положить Наконец, сигнал можно нормировать таким образом, чтобы его энергия Э равнялась единице и, следовательно,

При этих условиях выражения для и принимают вид

и, следовательно, произведение длительность x полоса

Нужно иметь в виду, что являются среднеквадратическими отклонениями соответственно от и . Поэтому полную длительность сигнала следует приравнять а полную ширину спектра (включая и область отрицательных частот) - величине .

Произведение зависит от формы сигнала, однако оно не может быть меньше 1/2. Оказывается, что наименьшее возможное значение соответствует колоколообразному импульсу.

Метод моментов применим не к любым сигналам. Из выражений для видно, что функция с увеличением t должна убывать быстрее, чем , а функция - быстрее, чем так как в противном случае соответствующие интегралы стремятся к бесконечности (расходятся).

В частности, это относится к спёктру строго прямоугольного импульса, когда

В этом случае выражение для не имеет смысла и оценку эффективной ширины спектра прямоугольного импульса приходится основывать на иных критериях.

Рассмотрим некоторые простые сигналы типа видеоимпульсов, т. е. сигналов, спектр которых сосредоточен в области низких частот, и определим с помощью равенства Парсеваля энергию, содержащуюся в полосе от до некоторой граничной частоты :

Относя затем к полной энергии импульса Э, определяем коэффициент

характеризующий концентрацию энергии в заданной полосе.

В качестве исходного сигнала примем прямоугольный импульс, затем рассмотрим треугольный и колоколообразный (гауссовский). Последний особенно показателен, так как для него обеспечивается максимально возможная концентрация энергии спектра в заданной полосе .

Для прямоугольного импульса в соответствии с (2.68)

Вычислив интеграл, получим

где - интегральный синус.

Переходя к аргументу , записываем

Для треугольного импульса, спектральная плотность которого определяется формулой (2.73), а полная энергия

Рис. 2.23. Доля энергии сигнала в полосе (а) и деформация импульса при усечении спектра (б)

Для гауссовского импульса в соответствии с (2.77) получаем

где - полная энергия гауссовского импульса, а функция

Учитывая, что длительность гауссовского импульса определена в п. 3 § 2.10 и равна , аргумент функции можно записать в форме Функции для трех импульсов представлены на рис. 2.23, а.

Итак, значение произведения требующееся для заданного максимально для прямоугольного импульса (при ) и минимально для гауссовского. В частности, уровню соответствуют значения , равные 1,8; 0,94 и 0,48.

Выбор границы спектра по энергетическому критерию в некоторых практических задачах не всегда приемлем. Так, если при обработке импульса требуется сохранить его форму достаточно близкой к прямоугольной, то должно быть гораздо больше единицы. Для иллюстрации этого важного положения на рис. 2.23, б показаны исходный импульс (штриховая линия) и его деформация при усечении спектра на уровнях .

В любом случае при заданной форме сигнала сжатие его во времени с целью, например, повышения точности определения момента его появления неизбежно сопровождается расширением спектра, что заставляет расширять полосу пропускания измерительного устройства.

Аналогично сжатие спектра импульса с целью повышения точности, измерения частоты неизбежно сопровождается растяжением сигнала во времени, что требует удлинения времени наблюдения (измерения). Невозможность одновременно сконцентрировать сигнал в узкой полосе частот и в коротком интервале времени представляет собой одно из проявлений известного в физике принципа неопределенности.

Вопрос о величине произведения длительность X полоса актуален в связи с проблемой электромагнитной совместимости, возникающей при взаимных помехах радиостанций. С этой точки зрения наиболее желательна форма импульсов, близкая к колоколообразной.

2. СКОРОСТЬ УБЫВАНИЯ СПЕКТРА ВНЕ ОСНОВНОЙ ПОЛОСЫ

Для выявления связи между поведением в области относительно высоких частот и структурой сигнала s(t) воспользуемся свойствами таких испытательных сигналов, как единичный импульс и единичный скачок.

Единичный импульс является единственной функцией, имеющей неубывающую спектральную плотность на всей оси частот -

Поэтому можно утверждать, что сигнал , спектр которого вне основной полосы не убывает с ростом , содержит в своем составе дельтафункцию (в реальных условиях достаточно мощный короткий импульс).

Далее, единственной функцией времени, имеющей спектральную плотность вида является единичный скачок и . Следовательно, убывание хвоста спектра сигнала по закону свидетельствует о наличии в функции скачков, т. е. разрывов непрерывности. Но в точках разрыва производная функции обращается в дельта-функцию (с постоянным коэффициентом, равным величине скачка). Поэтому убывание спектра пропорционально указывает на наличие дельта-функции в составе производной Это рассуждение можно продолжить и для производных сигнала более высоких порядков.

Проиллюстрируем сказанное примерами трех сигналов, представленных на рис. 2.24: с разрывом, с изломом и «гладкого» сигнала (без разрывов и изломов).

В первом примере (рис. 2.24, а) производная определяется выражением

и спектральная плотность функции в соответствии с табл. 2.1

Для определения спектральной плотности сигнала , являющегося интегралом от , можно исходить из выражения

В данном случае операция законна, поскольку [см. (2.60)].

При спектральная плотность . Как видно из рис. 2.24, а, это объясняется наличием функции в первой производной сигнала s(t).

При практических расчетах длительности сигнала и шири­ны его спектрав ряде случаев удобно пользоваться энергетиче­ским критерием. Активную длительность импульсаи активную ширину спектра (или ) определяют как интервал времени и диапазон частот соответственно, внутри которых сосре­доточена подавляющая часть полной энергии Э импульса (напри­мер, 95%). Если сигнал s (t ) задан на интервале времени , то его активная длительность рассчитывается из условия

В левой части равенства записана энергия сигнала, сосредоточен­ная в интервале времени 0 – (рис. 4.33,а). В правой части равенства – доля (определяемая заданным коэффициентом полной энергии сигнала.

Исходя из равенства Парсеваля, аналогично рассчиты­вается активная ширина спектра сигнала

Таким образом, активная ширина спектра сигнала соответствует полосе частот, в пределах которой заключена доля полной энергии сигнала (рис. 4.33, б).

В случае простых видеоимпульсов (например, прямоугольного, треугольного, косинусоидального), спектр которых сосредоточен в области низких частот, можно считать с достаточной для прак­тики точностью, что

где, - постоянная величина, зависящая от формы импульса и критерия оценки величини .

Рис.4.33. Сигнал (а) и его спектр (б)

Как видно из (4.61), уменьшение длительности импульса неиз­бежно приводит к увеличению ширины его спектра, и наоборот. Пользуясь соотношением (4.61), можно рассчитать полосу частот, занимаемую спектром сигнала в зависимости от его длительности.

Рис 4.34. Прямоугольный импульс (а) и его спектр (б)

Для перечисленных выше типов видеоимпульсов зна­чение близко к единице. В частности, если оцени­вать активную ширину спе­ктра прямоугольного им­пульса длительностью(рис. 4.34, а) как полосу частотf = 0 и тем значением частоты, когда спектральная плотность первый раз обращается в нуль (рис. 4.34, б), т. е. когда аргумент спектральной плотности (4.42) прини­мает значение ,то = 1. Следовательно, для пря­моугольного импульса = 1.

Пользуясь соотношением (4.60), можно показать, что в полосе (0, ) (в первом лепестке) сосредоточено свыше 90% полной энергии сигнала.

    1. Вопросы и задания для самопроверки:

    Из каких тригонометрических функций можно сформировать периодический сигнал?

    Что такое постоянная и основная составляющие, гармоники сигнала?

    Какие формулы ряда Фурье используют для описания периодических сигналов?

    Записать ряд Фурье (4.4) в тригонометрической и комплексных формах, ограничившись третьей гармоникой.

    Что такое спектр амплитуд?

    Периодический сигнал задан рядом Фурье в форме

Представить этот ряд в тригонометрической форме (4.10).

Теоретически, как указывалось выше, для большинства периодических функций спектр неограничен, т.е. для передачи сигналов телемеханики без изменения формы необходимы бесконечно большая полоса пропускания канала связи и отсутствие амплитудных и фазовых искажений. Практически все каналы связи имеют ограниченную полосу пропускания, и форма сигналов при передаче по каналу изменяется даже при отсутствии в этой полосе амплитудных и фазовых искажений. Очевидно, важно передать ту часть спектра сигнала, которая содержит гармонические составляющие с относительно большими амплитудами. В связи с этим вводится понятие практической ширины спектра сигнала. Под практической шириной спектра сигнала понимается та область частот, в пределах которой лежат гармонические составляющие сигнала с амплитудами, превышающими наперед заданную величину.

Поскольку средняя мощность, выделяемая сигналом на активном сопротивлении, равном 1 Ом, складывается из мощностей, выделяемых на этом сопротивлении гармоническими составляющими,

практическая ширина спектра с энергетической точки зрения может быть определена как область частот, в пределах которой сосредоточена подавляющая часть мощности сигнала.

В качестве примера определим практическую ширину спектра периодической последовательности прямоугольных импульсов (рис. 1.8,а), если требуется учесть все гармонические составляющие сигнала, амплитуды которых более 0,2 от амплитуды первой гармоники. Число подлежащих учету гармоник k может быть получено из выражения

,

откуда k = 5.

Таким образом, практическая ширина спектра в рассмотренном примере оказывается равной 5W 1 , в ней размещаются всего три гармоники (первая, третья и пятая) и постоянная составляющая.

Средняя мощность P k 5 , выделяемая в активном сопротивлении, равном 1 Ом, перечисленными составляющими, равна

Средняя мощность, выделяемая в этом же сопротивлении всеми составляющими сигнала, будет

Таким образом, %, т.е. составляющие, входящие в практический спектр, выделяют в активном сопротивлении 96 % всей мощности сигнала.

Очевидно, расширение практического спектра данного сигнала (свыше 5W 1) с энергетической точки зрения нецелесообразно.

Ограничение спектра сигнала оказывает также влияние на его форму. Для иллюстрации на рис. 1.8 показано изменение формы прямоугольных импульсов при сохранении в спектре только постоянной составляющей и первой гармоники (рис. 1.8, б ), при ограничении спектра частотой 3W 1 (рис. 1.8, в ) и при ограничении спектра частотой 5W 1 (рис. 1.8, г ). Как следует из рисунка, чем круче должен быть фронт импульса, тем большее число высших гармонических составляющих должно входить в состав сигнала.


A 0 +A 1 (t )



б
a

U (t )
U (t )

A 0 +A 1 (t )+A 3 (t ) A 0 +A 1 (t )+A 3 (t)+A 5 (t )

в
г

Рис. 1.8. Формы сигнала при ограничении спектра последовательности

прямоугольных импульсов

Рассмотренная зависимость формы периодического сигнала от количества суммируемых гармоник показывает, что при выборе практической ширины спектра сигнала нельзя ограничиваться только энергетическими соображениями. Необходимо учитывать требования к сигналу на выходе системы, как с энергетической точки зрения, так и с точки зрения сохранения его формы. В общем случае практическая ширина спектра сигнала выбирается из условия

, (1.21)

где m = 0,5… 2 – коэффициент формы импульса; при m = 1 обеспечивается передача около 90 % всей энергии сигнала.

В кодоимпульсных системах телеизмерения, а также во многих системах телеуправления каждая кодовая комбинация состоит из определенной последовательности прямоугольных импульсов и пауз. Кодовая комбинация, соответствующая данной величине измеряемого параметра или команде, может периодически передаваться по каналу связи. Спектр такого сигнала зависит, конечно, от того какая именно кодовая комбинация передается. Но самым главным фактором, определяющим удельный вес высших гармоник спектра, остается наибольшая частота следования импульсов. Поэтому и для кодоимпульсных систем при определении практически необходимой ширины полосы частот выбирают сигнал в виде периодической последовательности прямоугольных импульсов (рис. 1.5). Параметр t выбирают равным длительности самого короткого импульса среди всех встречающихся в кодовых комбинациях, период следования T = 2t. В этом случае наибольшая частота следования импульсов W max = 2p / T и частота основной гармоники спектра W 1 = W max . Необходимая ширина полосы частот сигнала определяется дискретным спектром с ограниченным числом составляющих и в соответствии с выражением (1.21).

Характер спектра, определяющий требуемую полосу частот, зависит не только от вида сигнала, но и от условий, существующих в тракте передачи. Если переходные процессы, возникающие в системе при передаче одного импульса, заканчиваются до момента возникновения следующего импульса, то вместо периодической последовательности импульсов можно рассматривать передачу независимых одиночных импульсов.



gastroguru © 2017