Ядро цп что. Двухъядерный или четырехъядерный процессор – в чем разница? Влияние количества ядер на производительность

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. Будущее в сфере процессоров смартфонов уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Эти пояснения были опубликованы в статье «Octa-core vs Quad-core: Does it make a difference?» на страницах ресурса Trusted Reviews .

Сами термины «восьмиядерный» и » четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.

Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности! Данное решение необходимо для смартфона, работающего от аккумулятора, но не для головного устройства, постоянно питающегося от бортовой сети автомобиля.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как HTC One M9 и G Flex 2, ставший большим достижением компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Trasted Reviews.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном устройстве? Такой необходимости нет, например Apple, обеспечивает достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. Как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения выйдут из моды.

О твечая на вопрос, на что влияет количество ядер в процессоре, хочется сразу сказать – на производительность компьютера. Но это настолько сильное упрощение, что оно даже в какой-то момент становится ошибкой.

Ладно бы пользователи просто заблуждались и ничего не теряли. Проблема в том, что неправильное понимание сути многоядерности приводит к финансовым потерям. Пытаясь увеличить производительность, человек тратит деньги на процессор с большим количеством ядер, но не замечает разницы.

Многоядерность и многопоточность

Когда мы изучали вопрос, то обратили внимание на особенность процессоров Intel – в стандартных инструментах Windows отображается разное число ядер. Это обусловлено работой технологии Hyper-Threading, которая обеспечивает многопоточность.

Чтобы вы больше не путались в понятиях, разберемся раз и навсегда:

  • Многоядерность – чип оснащен несколькими физическими архитектурными ядрами. Их можно увидеть, потрогать руками.
  • Многопоточность – несколько одновременно обрабатываемых потоков информации.
    Ядро может быть физически одно, но программные технологии на его основе создают два потока выполнения задач; два ядра – четыре потока и т.д.

Влияние количества ядер на производительность

Увеличение производительности на многоядерном процессоре достигается за счет разбиения выполнения задач. Любая современная система делит процесс на несколько потоков даже на одноядерном процессоре – так достигается та самая многозадачность, при которой вы можете, например, слушать музыку, набирать документ и работать с браузером. Очень любят и постоянно используют многопоточность следующие приложения:

  • архиваторы;
  • медиапроигрыватели;
  • кодировщики видео;
  • дефрагментаторы;
  • антивирусы;
  • графические редакторы.

Важен принцип разделения потоков. Если компьютер работает на одноядерном процессоре без технологии Hyper-Threading, то операционная система производит моментальные переключения между потоками, так что для пользователя процессы визуально выполняются одновременно. Все действия выполняются в течение миллисекунд, поэтому вы не видите серьезную задержку, если не нагружаете сильно ЦП.

Если же процессор многоядерный (или поддерживает многопоточность), то в идеале переключений не будет. Система посылает на каждое ядро отдельный поток. В результате увеличивается производительность, потому что нет необходимости переключаться на выполнение другой задачи.

Но есть еще один важный фактор – поддерживает ли сама программа многозадачность? Система может разделить процессы на разные потоки. Однако если вы запускаете очень требовательную игру, но она не оптимизирована под работу с четырьмя ядрами, но никакого прироста производительности по сравнению с двухъядерным процессором не будет.

Разработчики игр и программ в курсе об этой особенности, поэтому постоянно оптимизируют код под выполнение задач на многоядерных процессорах. Но эта оптимизация не всегда успевает за увеличением количества ядер, поэтому не стоит тратить огромные деньги на самые новые мощные процессоры с максимально возможным числом поддерживаемых потоков – потенциал чипа не будет раскрываться в 9 программах из 10.

Так сколько ядер выбирать?

Прежде чем покупать процессор с 16 ядрами, подумайте, потребуется ли такое количество потоков для выполнения задач, которые вы будете ставить перед компьютером.

  • Если компьютер приобретается для работы с документами, серфинга в интернете, прослушивания музыки, просмотра фильмов, то хватит двух ядер. Если взять процессор с двумя ядрами из верхнего ценового сегмента с хорошей частотой и поддержкой многопоточности, то не будет проблем при работе с графическими редакторами.
  • Если вы покупаете машину с расчетом на мощную игровую производительность, то сразу ставьте фильтр на 4 ядра минимум. 8 ядер с поддержкой многопоточности – самый топ с запасом на несколько лет. 16 ядер – перспективно, но велика вероятность, что пока вы раскроете потенциал такого чипа, он устареет.

Как я уже говорил, разработчики игр и программ стараются не отставать от прогресса процессоров, но пока огромные мощности просто не нужны. 16 ядер подойдут пользователям, которые занимаются рендерингом видео или серверными вычислениями. Да, в магазинах такие процессоры называют игровыми, но это только для того, чтобы они продавались – геймеров вокруг точно больше, чем тех, кто рендерит видео.

Преимущества многоядерности можно заметить только при очень серьезной вычислительной работе в несколько потоков. Если, условно, игра или программа оптимизирована только под четыре потока, то даже ваши восемь ядер будут бессмысленной мощностью, которая никак не повлияет на производительность.

Это как перевозить стул на огромной грузовой машине – задача от этого не выполняется быстрее. Но если правильно использовать имеющиеся возможности (например, загрузить кузов полностью другой мебелью), то производительность труда увеличится. Помните об этом и не ведитесь на маркетинговые штучки с добавлением слова «игровой» к процессорам, которые даже на самых последних играх не раскроют весь свой потенциал.

Ещё на сайте:

На что влияет количество ядер процессора обновлено: Январь 31, 2018 автором: admin

В последние годы производители процессоров не стремятся к достижению максимальной тактовой частоты - вместо этого они наращивают мощь CPU, увеличивая количество ядер.
Расскажем, выиграют ли пользователи при покупке новых многоядерных чипов.

Первый многоядерный чип был выпущен в 2001 году. Процессор под названием Power4 от компании IBM мог похвастаться двумя 64битными ядрами на основе микроархитектуры PowerPC, но применялся исключительно для решения узкопрофильных задач. Пользователям же персональных ПК пришлось ждать появления двуядерного CPU еще долгих четыре года. Наконец, в мае 2005-го, сразу вслед за двуядерным 64-битным микропроцессором
Opteron для серверных систем от компании AMD, вышел в свет двуядерный Intel Pentium D для домашних персональных компьютеров. В ноябре 2007 года переполох в компьютерной индустрии устроила компания AMD, которой удалось уместить четыре ядра на одном кристалле, в результате чего был создан процессор AMD Phenom Х4 с микроархитектурой К10. Впрочем, из-за огрехов разработки нового творения полноценной революции не получилось, а главным игроком на рынке в то время стала фирма Intel, запустившая в продажу первый «четырехъядерник» Intel Core 2 Quad.

В 2009 году в продуктовых линейках двух давних конкурентов произошли существенные изменения. На смену устаревшему семейству Intel Core 2 Duo пришли новые процессоры Intel серий Core i3, i5 и i7. Они обзавелись микроархитектурой Sandy Bridge и производятся по 32-нанометровому техпроцессу. Также 14 октября 2011 года увидел свет новейший шестиядерный процессор Intel Core i7-3960X на базе архитектуры Sandy Bridge-E, являющийся на сегодняшний день самым быстрым CPU от компании Intel для домашних пользователей. Тем временем AMD существенно доработала свой четырехъядерный Phenom Х4, увеличив объем кеш-памяти и освоив 45-нанометровый технологический процесс, а в апреле 2010 года анонсировала «шестиядерник» AMD Phenom II Х6 под кодовым именем Thuban, который позволил не отпустить Intel слишком далеко вперед. Более того, совсем недавно состоялась презентация процессоров AMD на основе новейшей микроархитектуры Bulldozer. Одним из важнейших нововведений является модульный принцип расположения ядер в системе х86 - по два на каждом модуле. Благодаря этой особенности компании несложно выстроить модельный ряд, предлагая решения с различными количеством вычислительных блоков и тактовыми частотами. В свете своих последних творений компания AMD настроена на серьезное противостояние с процессорами Intel.
Мы протестировали и сравнили производительность топовых четырех-, шести- и восьмиядерных CPU от Intel и AMD и решили разобраться, стоит ли вообще сегодня переплачивать за лишние ядра.

Параллельные вычисления

Еще при появлении первых процессоров производители старались максимально увеличить их мощность. В 1995 году университетом Вашингтона была выдвинута идея поддержки «одновременной многопоточности», которая была подхвачена и реализована компанией Intel в виде технологии Hyper-Threading. На практике это выглядело как разделение одного физического CPU на два виртуальных и значительная оптимизация работы процессора. Первым микрочипом с поддержкой данной технологии стал Intel Pentium 4, выпушенный 14 ноября 2002 года. По словам представителей компании, внедрение технологии Hyper-Threading вместе с необходимым увеличением площади кристалла на 5% позволило повысить производительность чипа на 15-30%. Правда, данные цифры напрямую зависели от программ, используемых для вычислений. Если говорить о создании аналогичной технологии со стороны AMD, то здесь компания Intel значительно опередила своих конкурентов.

ПРЕИМУЩЕСТВА МНОГОЯДЕРНЫХ.

Итак, создание многоядерных процессоров можно считать логическим развитием технологии HyperThreading. Производители стараются разделить работу CPU на множество потоков, которые процессорные ядра смогут обрабатывать параллельно. Однако для этого многоядерность должна полностью поддерживаться не только операционной системой, но и конкретными программами. Сейчас же, несмотря на доминирование «многоядерников» на рынке, количество оптимизированных под них приложений минимально. Обычно здесь идет речь о мультимедийных или узкоспециализированных программах, которые, в большинстве своем, «дружат» с новыми процессорами и используют всю мощь их ядер. С игровыми продуктами ситуация следующая: многие игры уже оптимизированы для работы с двумя и четырьмя ядрами, а со временем будут использоваться и многоядерные ресурсы современных CPU. Пока же наиболее практично и актуально в мире компьютеров смотрятся процессоры с четырьмя ядрами, а шести- и восьмиядерные чипы, пожалуй, стоит покупать лишь в том случае, если вы собираетесь запускать на своей системе программы с поддержкой многопоточности.

МИНУСЫ МНОГОЯДЕРНЫХ CPU

Недостатков у шести- и восьмиядерных процессоров куда больше. Одним из самых важных является внушительное энергопотребление, а значит, сильное тепловыделение и высокие температуры чипа при работе под нагрузкой. Производители борются с этим, осваивая все более «тонкие» технологические процессы и разрабатывая более совершенные схемы питания. Также тормозит массовое развитие «многоядерников» уже упомянутый дефицит соответствующего программного обеспечения: большая часть потенциала микрочипа остается попросту нереализованной. Кроме того, себестоимость многоядерных процессоров пока обуславливает отнюдь не привлекательную для рядового пользователя цену, которая тоже сдерживает спрос.

Результаты тестирования: Intel - быстрее, AMD - выгоднее

Для тестирования мы выбрали лучшие многоядерные процессоры от компаний Intel и AMD различных категорий. Наиболее интересным нам казалось противостояние «исполинов», только сошедших с конвейера, - первого в мире восьмиядерного чипа AMD FX-8150 на базе микроархитектуры Bulldozer и мощного «шестиядерника» Intel Core i7-3960X. К сожалению, никакой борьбы не получилось: чип от Intel на базе микроархитектуры Sandy Bridge-E значительно опередил по производительности грозный, казалось бы, «бульдозер» AMD. Более того, новый процессор от AMD потерпел сокрушительное поражение по всем фронтам, проиграв по итогам двух тестов даже далеко не новому AMD Phenom II Х4 980 BE с четырьмя ядрами.
Приятно удивил еще один четырехъядерный CPU - Intel Core i7 2600К. Выпушенный в начале прошлого года, он лишь немного отстал по производительности от своего старшего «собрата» - и это при том, что последний стоит в три раза дороже. Еще один баснословно дорогой шестиядерный CPU Intel Core i7-990X линейки Extreme Edition показывал неплохие результаты при тестировании, но в итоге проиграл более дешевому четырехъядерному чипу Intel Core i7-2600K. А эффективнее всего, как ни странно, многоядерность оказалась реализована у шестиядерного AMD Phenom II Х6 HOOT Black Edition, который при весьма демократичной цене в тесте Gordian Knot умудрился выиграть целых 39 с (29%) у заклятых соперников Intel Core i73960Х и Intel Core i7-2600K. Последние, правда, немного отыгрались в заключительном раунде, набрав чуть больше FPS в игре Unreal Tournament III, которая обеспечивает поддержку многоядерных CPU.
Таким образом, если речь идет об абсолютной мощности центрального процессора вне зависимости от его стоимости, здесь нет равных современным чипам от компании Intel. Если же мы попробуем теоретически подсчитать эффективность работы конкретного? CPU от каждой затраченной на его покупку копейки, то выиграют как раз модели производства AMD в целом и шестиядерный AMD Phenom II Х6 1100Т Black Edition в частности.

Тенденции развития: что обещает нам будущее?

Как будет выглядеть компьютерный микропроцессор через несколько дет? Давайте попробуем заглянуть в будущее, основываясь на известных сегодня разработках и планах производителей. Компания Intel остается верна своей стратегии «Тик-Так» и использует плавный переход на новые микроархитектуру и технологический процесс. В рамках этапа «Так» была представлена Sandy Bridge-E, теперь же следующей ступенью «Тик» в нынешнем году станет переключение производства на 22-нанометровый технологический процесс с помощью уникальных трехмерных транзисторов Intel 3D Tri-Gate и выпуск новых восьмиядерных процессоров на базе микроархитектуры Ivy Bridge. Однако одновременно идет работа нал следующими этапами создания CPU: не так давно исполнительный директор Intel Пол Отеллини заявил, что компания уже закончила разработку архитектуры Haswell, которая должна стать преемником Ivy Bridge в 2013 году.
У фирмы AMD на рынке центральных процессоров разработки, похоже, продвигаются со сложностями. Анонсированный ранее выпуск CPU Komodo неожиданно был отменен - на смену им придет новое семейство многоядерных (до восьми включительно) чипов AMD Vishera на основе архитектуры Piledriver (логическое развитие системы Bulldozer) и новой платформы Volan.
Аналитики предполагают, что в ближайшие годы нынешняя модель процессоростроения не изменится. У Кремний, которому уже давно предрекают «уход на пенсию», останется основной строительной
единицей. Впрочем, ему дышат в спину новые интересные элементы, например графон - кристалл углерода с миниатюрной толщиной в один атом. А в более отдаленной перспективе процессоры столкнутся с революционными изменениями, что приведет к появлению квантовых, оптических и даже молекулярных компьютеров.

Это интересно: экспериментальные многоядерные чипы

2006 год. Intel представила прототип 80-ядерного CPU, изготовленного по 32-нанометровому технологическому процессу.
2009 год. Компания Tilera продемонстрировала прототип серверного 100-ядерного процессора, в котором каждое ядро представляет собой отдельный чип с кеш-памятью первого и второго уровней.
2009 год. Intel показала «облачный» компьютер, представляющий собой 48-ядерный CPU. При этом все 48 ядер такого ПК сообщаются между собой как сетевые узлы.
2011 год. Intel разработала новую микроархитектуру Many Integrated Core (MIC). Новые процессоры на ее основе получат более 50 ядер и начнут производиться по 22-нанометровому техпроцессу уже в 2012 году.
2011 год. Компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс (количество операций с плавающей запятой в секунду), при этом потребляя менее 1 Вт электроэнергии. Данные чипы не могут быть использованы в качестве центральных процессоров, однако компания Adapteva предлагает применять их в качестве сопроцессора для таких сложных задач, как распознавание лиц или жестов пользователя.
2012 год. Компания ZiiLabs - дочернее предприятие Creative Technology - анонсировала 100-ядерную систему на чипе ZMS-40. Пиковая производительность системы при вычислениях с плавающей запятой составила 50 гигафлопс.

Мобильные четырехъядерные процессоры

В конце прошлого года компания NVIDIA основательно взволновала всех энтузиастов выпуском мобильного процессора NVIDIA Tegra 3, который располагает пятью ядрами Cortex А9. Четыре из них работают на частоте 1,4 ГГц, но активируются только в случае необходимости, а
дополнительное, пятое ядро, разгоняясь до 500 МГц, функционирует постоянно и служит для решения простых задач. Ищите качественные, рабочие прокси листы, можно купить свежие списки прокси по минимальной цене. Подобная технология позволяет значительно снизить энергопотребление CPU. Первым устройством на основе нового процессора стал планшет ASUS Transformer Prime. Кроме того, не стоит забывать об амбициозных планах компании AMD, которая, в частности, обещает выпустить в этом году четырехъядерный мобильный чип со встроенным графическим ядром под кодовым названием Trinity с поддержкой DirectX 11.

Обнаружили неприятную проблему предела тактовой частоты. Достигнув порога в 3 ГГц, разработчики столкнулись с значительным ростом энергопотребления и тепловыделения своих продуктов. Уровень технологий 2004 года не позволял существенно уменьшить размеры транзисторов в кремниевом кристалле и выходом из сложившейся ситуации стала попытка не наращивать частоты, а увеличить количество операций, выполняемых за один такт. Переняв опыт серверных платформ, где многопроцессорная компоновка уже была испытана, было решено объединить два процессора на одном кристалле.

С тех пор прошло немало времени, в широком доступе появились ЦП с двумя, тремя, четырьмя, шестью и даже восемью ядрами. Но основную долю на рынке до сих пор занимают 2 и 4-ядерные модели. Изменить ситуацию пытаются в AMD, но их архитектура Bulldozer не оправдала надежд и бюджетные восьмиядерники все еще не очень популярны в мире. Поэтому вопрос, что лучше: 2 или 4-ядерный процессор , до сих пор остается актуальным.

Разница между 2 и 4-ядерным процессором

На аппаратном уровне основное отличие 2-ядерного процессора от 4-ядерного – количество функциональных блоков. Каждое ядро, по сути, представляет собой отдельный ЦП, оснащенный своими вычислительными узлами. 2 или 4 таких ЦП объединены между собой внутренней скоростной шиной и общим контроллером памяти для взаимодействия с ОЗУ. Другие функциональные узлы тоже могут быть общими: у большинства современных ЦП индивидуальной является кэш-память первого (L1) и второго (L2) уровня, блоки целочисленных вычислений и операций с плавающей запятой. Кэш L3, отличающийся относительно большим объемом, один и доступен всем ядрам. Отдельно можно отметить уже упомянутые AMD FX (а также ЦП Athlon и APU серии A): у них общими являются не только кэш-память и контроллер, но и блоки вычислений с плавающей запятой: каждый такой модуль одновременно принадлежит двум ядрам.

Схема четырехъядерного процессора AMD Athlon

С пользовательской точки зрения разница между 2 и 4-ядерным процессором заключается в количестве задач, которые ЦП может обработать за один такт. При одинаковой архитектуре, теоретическая разница будет составлять 2 раза для 2 и 4 ядер или 4 раза для 2 и 8 ядер, соответственно. Таким образом, при одновременной работе нескольких процессов, увеличение количества должно повлечь за собой рост быстродействия системы. Ведь вместо 2 операций четырехъядерный ЦП за один момент времени сможет выполнять сразу четыре.

Чем обусловлена популярность двухъядерных ЦП

Казалось бы, если увеличение числа ядер влечет за собой рост производительности, то на фоне моделей с четырьмя, шестью или восемью ядрами у двухядерников нет никаких шансов. Тем не менее, мировой лидер на рынке ЦП, компания Intel, ежегодно обновляет ассортимент своей продукции и выпускает новые модели всего с парой ядер (Core i3, Celeron, Pentium). И это на фоне того, что даже в смартфонах и планшетах на такие ЦП пользователи смотрят с недоверием или презрением. Чтобы понять, почему самые популярные модели – именно процессоры с двумя ядрами, следует учесть несколько основных факторов.

Intel Core i3 — самые популярные 2-ядерные процессоры для домашнего ПК

Проблема совместимости . При создании программного обеспечения разработчики стремятся сделать так, чтобы оно могло функционировать как на новых компьютерах, так и уже существующих моделях ЦП и ГП. Учитывая ассортимент на рынке, важно обеспечить, чтобы игра нормально работала и на двух ядрах, и на восьми. Большинство всех существующих домашних ПК оснащены двухъядерным процессором, поэтому поддержке таких компьютеров уделяется больше всего внимания.

Сложность распараллеливания задач . Чтобы обеспечить эффективное задействование всех ядер, вычисления, производимые в процессе работы программы, следует разделить на равные потоки. Например, задача, которая может оптимально задействовать все ядра, выделив каждому из них по одному или два процесса — одновременная компрессия нескольких видеороликов. С играми – сложнее, так как все выполняемые в них операции взаимосвязаны. Несмотря на то, что основную работу выполняет графический процессор видеокарты, информацию для формирования 3d-картинки подготавливает именно ЦП. Сделать так, чтобы каждое ядро обрабатывало свою порцию данных, а затем подавало ее ГП синхронно с другими, достаточно сложно. Чем больше одновременных потоков вычислений нужно обрабатывать – тем тяжелее реализация задачи.

Преемственность технологий . Разработчики программного обеспечения используют для своих новых проектов уже существующие наработки, подвергающиеся неоднократной модернизации. В отдельных случаях доходит до того, что такие технологии уходят корнями в прошлое на 10-15 лет. Разработка, основанная на проекте десятилетней давности, кардинальной переработке для идеальной оптимизации поддается очень неохотно, если не совсем никак. Как следствие, наблюдается неспособность софта рационально использовать аппаратные возможности ПК. Игра S.T.A.L.K.E.R. Зов Припяти, вышедшая в 2009 году (в эпоху расцвета многоядерных ЦП) построена на движке 2001 года, поэтому не умеет нагружать более, чем одно ядро.

S.T.A.L.K.E.R. полноценно задействует только одно ядоро 4-ядерного ЦП

Такая же ситуация и с популярной онлайн-РПГ World of Tanks: движок Big World, на котором она базируется, создан в 2005 году, когда многоядерные ЦП еще не воспринимались, как единственно возможный путь развития.

World of Tanks тоже не умеет распределять нагрузку на ядра равномерно

Финансовые сложности . Следствием этой проблемы является предыдущий пункт. Если создавать каждое приложение с нуля, не используя имеющиеся технологии, его реализация обойдется в баснословные суммы. К примеру, стоимость разработки GTA V составила более 200 млн долларов. При этом, некоторые технологии все равно не были созданы «из чистого листа», а позаимствованы из предыдущих проектов, так как игра писалась под 5 платформ сразу (Sony PS3, PS4, Xbox 360 и One, а также ПК).

GTA V оптимизирована под многоядерность и умеет равномерно загружать процессор

Все эти нюансы не позволяют в полной мере использовать потенциал многоядерных процессоров на практике. Взаимозависимость производителей аппаратного обеспечения и разработчиков софта порождает замкнутый круг.

Какой процессор лучше: 2 или 4-ядерный

Очевидно, что при всех преимуществах потенциал многоядерных процессоров до сих пор остается нереализованным до конца. Некоторые задачи вообще не умеют равномерно распределять нагрузку и работают в один поток, другие – делают это с посредственной эффективностью, и лишь малая доля ПО полноценно взаимодействуют со всеми ядрами. Поэтому вопрос, какой лучше процессор, 2 или 4 ядра , купить, требует внимательного изучения текущей ситуации.

На рынке представлены продукты двух производителей: Intel и AMD, отличающиеся особенностями реализации. Advanced Micro Devices традиционно делают упор на многоядерность, в то время как «Интел» неохотно идут на такой шаг и наращивают количество ядер только если это не приводит к снижению удельной производительности в расчете на ядро (избежать которого очень сложно).

Увеличение количества ядер снижает итоговую производительность каждого из них

Как правило, общая теоретическая и практическая производительность многоядерного ЦП ниже, чем аналогичного (построенного на такой же микроархитектуре, с тем же техпроцессорм) с одним ядром. Вызвано это тем, что ядра используют общие ресурсы, и это не лучшим образом сказывается на быстродействии. Таким образом, нельзя просто приобрести мощный четырех- или шестиъядерный процессор с расчетом на то, что он точно не будет слабее двухъядерника из той же серии. В некоторых ситуациях – будет, при том ощутимо. В качестве примера можно привести запуск старых игр на компьютере с восьмиядерным процессором AMD FX : FPS при этом порой ниже, чем на аналогичном ПК, но с четырехъядерным ЦП.

Нужна ли сегодня многоядерность

Значит ли это, что много ядер не нужно? Несмотря на то, что вывод кажется закономерным — нет. Легкие повседневные задачи (такие как веб-серфинг или работа с несколькими программами одновременно) положительно реагируют на увеличение числа ядер процессора. Именно по этой причине производители смартфонов делают упор на количество, опуская на второй план удельную производительность. Opera (и другие браузеры на движке Chromium), Firefox запускают каждую открытую вкладку в виде отдельного процесса, соответственно, чем больше ядер – тем быстрее переход между вкладками. Файловые менеджеры, офисные программы, проигрыватели – сами по себе не являются ресурсоемкими. Но при потребности часто переключаться между ними многоядерный процессор позволит повысить производительность системы.

Браузер Opera каждой вкладке присваивает отдельный процесс

В компании Intel осознают это, потому технология HuperThreading, позволяющая ядру обрабатывать второй поток силами неиспользуемых ресурсов, появилась еще во времена Pentium 4. Но она не позволяет в полной мере компенсировать недостаток производительности.

В «Диспетчере задач» 2-ядерный процессор с Huper Threading отображается, как 4-ядерный

Создатели игр, тем временем, постепенно наверстывают упущенное. Появление новых поколений консолей Sony Play Station и Microsoft Xbox простимулировало разработчиков уделять больше внимания многоядерности. Обе приставки созданы на базе восьмиядерных чипов AMD, поэтому теперь программистам не нужно тратить уйму сил на оптимизацию при портировании игры на ПК. С ростом популярности этих консолей — с облегчением смогли вздохнуть и те, кто разочаровался в приобретении AMD FX 8xxx. Многоядерники усиленно отвоевывают позиции на рынке, о чем можно убедиться на примере обзоров.



gastroguru © 2017