Высокочастотная связь по лэп. Как шифровалась связь: технологии защиты в годы войны Связь по линиям электропередач

Третий

Второй

Первый

Схема защиты трансформатора , в которой имеется дифференциальная и газовая защиты (ДЗ), реагирующие на отключение трансформатора с двух сторон и максимальная токовая защита (СЗ), которая должна производить отключение только с одной стороны.

При составлении принципиальной схемы релейной защиты в свернутом виде может быть не обнаружена электрическая связь цепей отключения двух выключателей. Из развернутой схемы (Схема 1)следует, что при такой связи (поперечная цепь) неизбежна ложная цепь. Необходимы два оперативных контакта у защитных реле (Схема 2), действующие на два выключателя или разделительное промежуточное реле (Схема 3).

Рис. – Схема защиты трансформатора: 1 – неправильная; 2,3 – правильные

Неразделенные цепи высшего и низшего напряжения трансформатора.

Из рисунка (1) видна невозможность независимого отключения одной из сторон трансформатора без отключения другой.

Указанная ситуация исправляется включением промежуточного реле КL.

Рис. – Схемы защиты трансформатора: 1 – неправильная; 2 – правильная

Защиты генератора и трансформатора блока на электростанции действуют, как и требуется, на отключение выключателя и автомата гашения поля через разделительные промежуточные реле КL1 и КL2, но реле присоединены к разным секциям шинок питания, т.е. через разные предохранители.

Ложная цепь, показанная стрелками, образовалась через лампу контроля HL предохранителей в результате перегорания предохранителя FU2.

Рис. – Образование ложной цепи при перегорании предохранителя

1, 2, 3 – оперативные контакты реле

Схемы с питанием цепей вторичных соединений оперативным постоянным и переменным током

При хорошо изолированных от земли полюсах источника питания замыкание на землю в одной какой-либо точке цепи вторичных соединений обычно не влечет за собой вредных последствий. Однако второе замыкание на землю может вызвать ложное включение или отключение, неправильную сигнализацию и др. Профилактическими мерами в этом случае могут быть:

а) сигнализация о первом замыкании на землю в одном из полюсов; б) двухполюсное (двухстороннее) отделение элементов цепей управления – практически не применяется из-за сложности.

При изолированных полюсах (Рис.) заземление в точке а при разомкнутых замыкающих контактах 1 еще не вызовет ложного действия катушки командного органа К, но как только появится второе повреждение изоляции на землю в разветвленной сети положительного полюса, неминуема ложная работа аппарата, так как контакт 1 оказывается зашунтированным. Вот почему необходима сигнализация о замыкании на землю в оперативных цепях, и прежде всего на полюсах источника питания.



Рис. – Ложное срабатывание аппарата при втором замыкании на землю

Однако в сложных цепях с большим числом последовательно включенных оперативных контактов такая сигнализация может и не выявить возникшего замыкания на землю (Рис.).

Рис. – Неэффективность контроля изоляции в сложных цепях

При появлении заземления между контактами в точке а сигнализация невозможна.

В практике эксплуатации автоматических установок со слаботочной аппаратурой (до 60 В) прибегают иногда к намеренному заземлению одного из полюсов, например положительного (он более запыляется и подвержен электролитическим явлениям, т.е. и без того имеет ослабленную изоляцию). Это облегчает обнаружение и ликвидацию аварийного очага. В таком случае рекомендуется подсоединять катушку цепей управления одним концом к тому полюсу, который заземлен.

Все сказанное о питании цепей на постоянном оперативном токе, может быть отнесено и к оперативному переменному току с питанием цепей линейным напряжением. При этом следует учесть вероятность ложной работы (из-за емкостных токов) и резонансных явлений. Поскольку предусмотреть условия надежной работы в этом случае затруднительно, то иногда применяются вспомогательные изолирующие промежуточные трансформаторы с заземлением одного из зажимов на вторичной стороне.

Как видно из схемы, в этом случае при повреждении изоляции на землю в точке 2 перегорает предохранитель FU1 и замыкание на землю в точке 1 не вызывает ложного включения контактора К.

Схема включения конденсаторов с разделительными диодами

Высокочастотная (ВЧ) связь по линиям высокого напряжения получила значительное распространение во всех странах. В Украине этот вид связи широко используется в энергосистемах для передачи информации различного характера. Высокочастотные каналы используются для передачи сигналов релейной защиты линий, телеотключения выключателей, телесигнализации, телеуправления, телерегулирования и телеизмерения, для диспетчерской и административно-хозяйственной телефонной связи, а также для передачи данных.

Каналы связи по линиям электропередачи дешевле и надежнее каналов по специальным проводным линиям, так как не расходуются средства на сооружение и эксплуатацию собственно линии связи, а надежность линии электропередачи значительно выше надежности обычных проводных линий. Осуществление высокочастотной связи по линиям электропередачи связано с особенностями, не встречающимися в проводной связи.

Для подключения аппаратуры связи к проводам линий электропередачи необходимы специальные устройства обработки и присоединения, позволяющие отделить высокое напряжение от слаботочной аппаратуры и осуществить тракт для передачи ВЧ сигналов (рис. 1).

Рис. – Присоединение высокочастотной аппаратуры связи к линиям высокого напряжения

Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые сейчас конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.

Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, .наводит во вторичной обмотке L2 напряжение, которое через конденсатор С1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом.

Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300–450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения.нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры.

Каналы системной автоматики – релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.

Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель. Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, и элемента настройки, присоединяемого параллельно катушке. Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в по­лосе запираемых частот до 500–800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.

Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100–300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.

Различные схемы настройки и необходимый диапазон запираемых частот получают, используя конденсаторы, дополнительные катушки индуктивности и резисторы, имеющиеся в элементе настройки заградителя.

Присоединение к линии можно осуществить различными способами. При несимметричной схеме ВЧ аппаратуру включают между проводом (или несколькими проводами) и землей по схемам «фаза – земля» или «две фазы – земля». При симметричных схемах ВЧ аппаратуру подключают между двумя или несколькими проводами линий («фаза – фаза», «фаза – две фазы»). На практике применяют схему «фаза – фаза». При включении аппаратуры между проводами разных линий используют лишь схему «фаза – фаза разных линий».

Для организации ВЧ каналов по линиям высокого напряжения применяют диапазон частот 18–600 кГц. В распределительных сетях используют частоты, начиная от 18 кГц, на магистральных линиях 40–600 кГц. Для получения удовлетворительных параметров ВЧ тракта на низких частотах необходимы большие значения индуктивностей силовых катушек заградителей и емкостей конденсаторов связи. Поэтому нижняя граница по частоте ограничена параметрами устройств обработки и присоединения. Верхняя граница частотного диапазона определяется допустимым значением линейного затухания, которое растет с увеличением частоты.

1. ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ

Схемы настройки заградителей . Высокочастотные заградители обладают высоким сопротивлением для токов рабочей частоты канала и служат для отделения шунтирующих ВЧ тракт элементов (подстанций и ответвлений), которые при отсутствии заградителей могут привести к увеличению затухания тракта.

Высокочастотные свойства заградителя характеризуются полосой заграждения, т. е. полосой частот, в которой сопротивление заградителя не меньше некоторого допустимого значения (обычно 500 Ом). Как правило, полоса заграждения определяется по допустимому значению активной составляющей сопротивления заградителя, но иногда по допустимому значению полного сопротивления.

Заградители отличаются по значениям индуктивностей, допустимым токам силовых катушек и по схемам настройки. Применяются одно- и двухчастотные резонансные или притуплённые схемы настройки и широкополосные схемы (по схеме полного звена и полузвена полосового фильтра, а также по схеме полузвена фильтра верхних частот). Заградители с одно- и двух-частотными схемами настройки часто не дают возможности заградить нужную полосу частот. В этих случаях применяют заградители с широкополосными схемами настройки. Такие схемы настройки применяют при организации каналов защиты и связи, имеющих общую аппаратуру присоединения.

При протекании тока через катушку заградителя возникают электродинамические усилия, действующие вдоль оси катушки, и радиальные, стремящиеся разорвать виток. Осевые усилия неравномерны по длине катушки. Большие усилия возникают на краях катушки. Поэтому шаг витков на краю делают больше.

Электродинамическая стойкость заградителя определяется максимальным током КЗ, который он выдерживает. В заградителе КЗ-500 при токе 35 кА возникают осевые усилия в 7 тонн (70 кН).

Защита элементов настройки от перенапряжений . Волна перенапряжения, возникающая на воздушной линии, попадает на заградитель. Напряжение волны распределяется между конденсаторами элемента настройки и входным сопротивлением шин подстанции. Силовая катушка представляет собой большое сопротивление для волны с крутым фронтом и при рассмотрении процессов, связанных с перенапряжениями, ее можно не учитывать. Для защиты конденсаторов настройки и силовой катушки параллельно силовой катушке подсоединяют разрядник, ограничивающий напряжение на элементах заградителя до безопасного для них значения. Пробивное напряжение разрядника по условиям деионизации искрового промежутка должно быть в 2 раза больше сопровождающего напряжения, т. е. падения напряжения на силовой катушке от максимального тока кз U сопр =I к.з. ωL.

При большом предразрядном времени пробивное напряжение конденсаторов значительно больше пробивного напряжения разрядников; при малом (менее 0,1 мкс) пробивное напряжение конденсаторов становится меньше пробивного напряжения разрядника. Поэтому необходимо задерживать рост напряжения на конденсаторах до момента срабатывания разрядника, что достигают включением добавочной катушки индуктивности L д последовательно с конденсатором (рис. 15). После пробоя разрядника напряжение на конденсаторе поднимается медленно и дополнительный разрядник, включенный параллельно конденсатору, хорошо его защищает.

Рис. – Схемы высокочастотных заградителей с устройством защиты от перенапряжений: а) одночастотная; б) двухчастотная

2. КОНДЕНСАТОРЫ СВЯЗИ

Общие сведения . Конденсаторы связи служат для подключения ВЧ аппаратуры связи, телемеханики и защиты к линиям высокого напряжения, а также для отбора мощности и измерения напряжения.

Сопротивление конденсатора обратно пропорционально частоте напряжения, прикладываемого к нему, и емкости конденсатора. Реактивное сопротивление конденсатора связи для токов промышленной частоты, следовательно, значительно больше, чем для частоты 50 – 600 кГц каналов связи телемеханики и защиты (в 1000 раз и более), что позволяет с помощью этих конденсаторов разделить токи высокой и промышленной частоты и предотвратить попадание высокого напряжения на электроустановки. Токи промышленной частоты отводятся на землю через конденсаторы связи, минуя аппаратуру ВЧ. Конденсаторы связи рассчитаны на фазное (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью).

Для отбора мощности применяют специальные конденсаторы отбора, включаемые последовательно с конденсатором связи.

В названиях элементов конденсаторов буквы обозначают последовательно характер применения, вид заполнителя, исполнение; цифры – номинальное фазное напряжение и емкость. СМР – связи, маслонаполненный, с расширителем; СММ – связи, маслонаполненный, в металлическом кожухе. Для различных напряжений конденсаторы связи комплектуют из отдельных элементов, соединенных последовательно. Элементы конденсаторов СМР-55/√3-0,0044 рассчитаны на нормальную работу при напряжении 1,1 U иом, элементы СМР-133/√3-0,0186 – на 1,2U иом. Емкость конденсаторов для классов изоляции 110, 154, 220, 440 и 500 кВ принимается с допуском от -5 до +10%.

3. ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ

Общие сведения и расчетные зависимости. Высокочастотную аппаратуру подключают к конденсатору не непосредственно через кабель, а через фильтр присоединения, который компенсирует реактивное сопротивление конденсатора, согласовывает волновые сопротивления линии и ВЧ кабеля, заземляет нижнюю обкладку конденсатора, чем образуется путь для токов промышленной частоты и обеспечивается безопасность работ.

При обрыве цепи линейной обмотки фильтра на нижней обкладке конденсатора появляется фазное напряжение по отношению к земле. Поэтому все переключения в цепи линейной обмотки фильтра присоединения производят при включенном заземляющем ноже.

Фильтр ОФП-4 (рис. ,) предназначен для работы на линиях 35, 110 и 220 кВ по схеме «фаза – земля» с конденсатором связи 1100 и 2200 пФ и с кабелем, имеющим волновое сопротивление 100 Ом. Фильтр имеет три частотных диапазона. Для каждого диапазона имеется отдельный воздушный трансформатор, залитый изоляционной массой.

Рис. – Принципиальная схема фильтра-присоединения ОФП-4

6. ОБРАБОТКА ГРОЗОЗАЩИТНЫХ ТРОСОВ, АНТЕННЫ

Грозозащитные тросы линий высокого напряжения могут быть также использованы в качестве каналов передачи информации. Тросы изолированы от опор с целью экономии электроэнергии, при атмосферных перенапряжениях они заземляются через пробиваемые искровые промежутки. Стальные тросы имеют высокое затухание для сигналов высокой частоты и позволяют передавать информацию лишь на коротких линиях на частотах не более 100 кГц. Биметаллические тросы (стальные тросы с алюминиевым покрытием), тросы алюмовелд (из скрученных сталеалюминевых проволок), одноповивные тросы (один повив – алюминиевые проволоки, остальные повивы – стальные) дают возможность организовать каналы связи с малыми затуханиями и уровнями помех. Помехи меньше, чем в каналах связи по фазным проводам, а аппаратура ВЧ обработки и присоединения проще и дешевле, так как токи, текущие по тросам, и напряжения на них невелики. Биметаллические провода дороже стальных, поэтому их применение может быть оправдано, если ВЧ каналы по фазным проводам не могут быть выполнены. Это может быть на сверхдальних, а иногда на дальних электропередачах.

Каналы по тросам можно включать по схемам «трос – трос», «трос – земля» и «два троса – земля». На ВЛ переменного тока тросы меняют местами через каждые 30 – 50 км для уменьшения в них наводок токов промышленной частоты, что вносит дополнительное затухание в 0,15 Нп на каждое скрещивание в схемах «трос – трос», не влияя на схему «два троса – земля». На передачах постоянного тока можно применять схему «трос – трос», так как здесь скрещивания не нужно.

Связь по грозозащитным тросам не прерывается при заземлении фазных проводов, не зависит от схемы коммутации линий.

Антенная связь применяется для присоединена к ВЛ передвижной ВЧ аппаратуры. Провод подвешивают вдоль проводов ВЛ или используют участок грозозащитного троса. Такой экономичный способ присоединения не нуждается в заградителях и конденсаторах связи.

Для передачи информации между защитами и автоматикой по концам высоковольтной линии используется канал, созданный для токов высокой частоты по схеме соединения “фаза–земля”.

В составе тракта включается одна фаза действующей ВЛ, которая через конденсаторы связи на подстанциях соединяется с землей для создания замкнутого контура ВЧ токам.

Наиболее часто на линии используют две удаленные фазы “А” и “С” для передачи по одной из них с подстанции команд частоты №1, а по второй – приема на частоте №2.


Устройство и назначение канала ВЧ связи . На каждой подстанции устанавливаются передатчики и приемники высокочастотных сигналов. В данном случае современная аппаратура ВЧ приемопередатчиков выполнена на микропроцессорной базе терминалов ETL640 v.03.32 копании АВВ.

Для обработки сигналов на каждой частоте изготавливается свой приемопередатчик. Поэтому для одной подстанции требуется 2 комплекта терминалов, настроенных на одновременное принятие и передачу сигналов по разным фазам ВЛ.

Подключением ВЧ приемопередатчика к ВЛ занимается специальная аппаратура, отделяющее высокое напряжение от слаботочного оборудования и создающая магистраль для передачи ВЧ сигналов. Ее комплектуют:

Высоковольтным конденсатором связи (КС);
- фильтром присоединения (ФП);
- высокочастотным заградителем (ВЗ);
- ВЧ кабелем.

Назначение высоковольтного конденсатора связи состоит в надежном изолировании от земли транспортируемых по ВЛ мощностей с промышленной частотой и пропускании через себя высокочастотных токов.

На фотоснимке рассматриваемой линии установлено 3 конденсатора с ФП в каждой фазе. Они используются для связи с оборудованием дальнего конца линии в целях:

1. Передачи команд РЗ и ПА;
2. Приема команд РЗ и ПА;
3. Работы ВЧ аппаратуры службы связи.

Для отделения ВЧ сигнала от высоковольтного оборудования подстанции в фазный провод ВЛ высокого напряжения монтируется ВЧ заградитель. который ограничивает величину потерь ВЧ сигналов через параллельные контуры.

Сквозь него хорошо проходят токи промышленной частоты и не пропускаются высокочастотные. ВЗ состоит из реактора (силовой катушки), пропускающего рабочий ток линии, и элементов настройки, параллельно подключенных с реактором.

Для согласования параметров входных сопротивлений ВЧ кабеля и линии используется фильтр присоединения, который выполняется моделью воздушного трансформатора с отпайками от обмоток, позволяющих выполнять необходимые регулировки. ВЧ кабель соединяет фильтр присоединения с приемопередатчиком.


Высокочастотные приёмопередатчики (ETL640), назначение . Приёмопередатчики типа ETL640 (ПРМ/ПРД) предназначены для передачи и приема ВЧ сигналов в виде команд, формируемых релейной защитой (РЗ) и противоаварийной автоматикой (ПА) на противоположный конец ВЛ.


Проверка исправности ВЧ канала . Сложное оборудование тракта ВЧ передачи располагается на расстояниях в сотни километров, требует контроля и поддержания его целостности. Приёмопередатчики ETL640 по концам ВЛ постоянно в обычном режиме эксплуатации обмениваются (осуществляют передачу/приём) сигналами контрольной частоты.

При уменьшении сигнала по величине или изменении его частоты сверх допустимых пределов срабатывает сигнализация неисправности. После восстановления работоспособности приёмопередатчик в автоматическом режиме возвращается к нормальному режиму работы.


Обмен сигналами . Передача и прием сигналов производится на выделенных частотах, к примеру:

Комплекс на фазе “А”: Тх: 470 + 4 кГц, Rx: 474 + 4 кГц;
- комплекс на фазе “С”: Тх: 502 + 4 кГц, Rx: 506 + 4 кГц.

Аппаратура ETL640 предназначена для круглосуточной постоянной работы в условиях отапливаемых ОПУ.


Прием и передача команд . Терминалы №1 и №2 комплексов ETL640 принимают и передают по 16 команд от РЗ и ПА.


Команды приемопередатчиков ETL640 . Типовые команды приемопередатчика любого комплекса ETL640 могут иметь вид:

1. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ без контроля с запретом ТАПВ и пуском от УРОВ или ЗНР комплекса №… REL-670;

2. Отключение 3-х фаз ВЛ-330 кВ с дальнего конца ВЛ с контролем измерительными органами Z3 ДЗ и 3-й ступени НТЗНП комплекса №… защит REL670 без запрета ТАПВ и пуском от фактора 3-х фазного отключения комплекса №… защит REL;

3. Телеускорение ДЗ с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ, с контролем параметров ступени Z3 ДЗ комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от ступени Z3 ДЗ комплекса №… защит REL-670;

4. Телеускорение НТЗНП с действием на одно или 3-х фазное отключение ВЛ-330 кВ с дальнего конца ВЛ с контролем параметров ступени Z3 НТЗНП комплекса №… защит REL670 с ОАПВ/ТАПВ и пуском от измерительного органа 3 ступени НТЗНП комплекса №… защит REL670;

5. Фиксация отключения линии со своей стороны ВЛ и действием в схему логики АФОЛ комплекса №… защит РЗА. Пуск от выходного реле схемы логики АФОЛ комплекса №… защит РЗА при отключении линии со своей стороны;

6. III очередь ОН, действующая на пуск:
- 5-й команды АКАП прд 232 кГц ВЛ №…;
- 2-й команды АКПА прд 286 кГц ВЛ №…;
- 4-й команды АНКА прд 342 кГц ВЛ №….

7. Фиксация включения линии со своей стороны и действием в схему логики АФОЛ комплекса №… защит РЗА ВЛ с пуском от выходного реле схемы логики АФОЛ комплекса №… защит РЗА ВЛ-330 при включении со своей стороны;

8. Пуск от 1-й ступени схемы САПАХ … с запуском:
- 6-й команды АНКА прд 348 кГц ВЛ №…;
- 4-й команды АКАП прд 122 кГц ВЛ №….

9. 3-я очередь отключения нагрузки с действием …

Каждая команда формируется для конкретных условий ВЛ с учетом ее конфигурации в электрической сети и эксплуатационных условий. Выходные реле ВЧ аппаратуры и переключающие устройства расположены в отдельном шкафу.


Цепи сигнализации ВЛ . Сигнализация терминалов. На лицевой панели терминалов расположено 3 светодиода, отражающих состояние самого устройства REL670 и 15 светодиодов, указывающих на срабатывания защит, неисправности и состояние оперативных переключателей.

Светодиоды терминалов REL670 (защита 1-го и 2-го комплексов) и REC670 (автоматика и УРОВ 1-го и 2-го комплекса В1 и В2) первых шести номеров имеют красную окраску. Светодиоды с номерами от 7 до 15 имеют желтый цвет.

Светодиоды статусной индикации. Над блоком ЖКД терминалов REС670 и REL670 вставлены 3 светодиодных индикатора “Ready”, “Start” и “Trip”. Для обозначения разной информации они светятся разным цветом. Зеленый цвет индикатора обозначает:

Работу устройств - устойчивым свечением;
- внутреннее повреждение - миганием;
- отсутствие питания оперативного тока - затемнением цвета.

Желтый цвет индикатора обозначает:

Пуск аварийного регистратора - устойчивым свечением;;
- нахождение терминала в тестовом режиме - сопровождается миганием.

Красный цвет индикатора обозначает выдачу команды аварийного отключения (устойчивое свечение).


Таблица светодиодной сигнализации терминала REС670

Сброс и опробование сигнализации . Сброс сигнализации, счетчиков учета приема и передачи ВЧ команд и информации по зонам ДЗ и НТЗНП для терминала производится от нажатия на кнопку SB1 (сброс сигнализации) на передней стороне шкафа.

Для опробования светодиодов терминалов REL670 (REС670) требуется нажать и удерживать дольше 5 секунд кнопку SB1.


Общепанельная световая сигнализация . С лицевой стороны шкафов REС670 находятся лампы:
- HLW – работы АПВ, ЗНФ, УРОВ;
- HLR2 – неисправность комплексов автоматики и УРОВ В-1или В-2.

С лицевой стороны шкафов REL670 находятся лампы:
- HLW – работы защит;
- HLR1 – комплекс защит выведен;
- HLR2 – неисправность комплексов защит.

С лицевой стороне шкафов ETL находятся лампы сигнализации:
- HLW1 – неисправность ETL 1-го комплекса;
- HLW2 – неисправность ETL 2-го комплекса.


Перспективы развития оборудования воздушных ЛЭП . Проверенные временем воздушные выключатели для высоковольтных ЛЭП постепенно вытесняются современными элегазовыми конструкциями, которым не требуется постоянная работа мощных компрессорных станций для поддержания давления воздуха в баках и воздушных магистралях.

Громоздкие аналоговые устройства РЗА и ПА для высоковольтного оборудования, требующие пристального внимания со стороны обслуживающего персонала, заменяются новыми микропроцессорными терминалами.


Разделение вертикально интегрированной структуры постсоветской электроэнергетики, усложнение системы управления, увеличение доли выработки электроэнергии малой генерации, новые правила подключения потребителей (сокращение сроков и стоимости подключения) при этом повышение требований к надежности энергоснабжения влечет за собой приоритетное отношение к развитию систем телекоммуникаций.

В энергетике применяется множество типов связи (порядка 20-ти) различающиеся по:

  • назначению,
  • среде передачи,
  • физическим принципам работы,
  • типу передаваемых данных,
  • технологии передачи.

Среди всего этого многообразия выделяется ВЧ связь по высоковольтным линиям (ВЛ) электропередачи, которая в отличие от остальных видов создавалась специалистами-энергетиками для нужд самой электроэнергетики. Оборудование прочих видов связи, изначально созданное для систем связи общего пользования, в той или иной степени, адаптируется к потребностям энергокомпаний.

Сама идея использования ВЛ для распространения информационных сигналов возникла при проектировании и строительстве первых высоковольтным линий (так как строительство параллельной инфраструктуры для систем связи влекло существенное удорожание), соответственно, уже в начале 20-х годов прошлого века вводятся в работу первые коммерческие системы ВЧ связи.

Первое поколение ВЧ связи было больше похоже на радиосвязь. Присоединение передатчика и приемника высокочастотных сигналов выполнялось с помощью антенны длинною до 100 м, подвешиваемой на опоры параллельно силовому проводу. Сама же ВЛ, являлась направляющей для ВЧ сигнала - в то время, для передачи речи. Антенное присоединение еще долго применялось для организации связи аварийных бригад и на железнодорожном транспорте.

Дальнейшая эволюция ВЧ связи привела к созданию оборудования ВЧ присоединения:

  • конденсаторов связи и фильтров присоединения, что позволило расширить полосу передаваемых и принимаемых частот,
  • ВЧ заградителей (заградительные фильтры), что позволило снизить влияние устройств подстанции и неоднородностей ВЛ на характеристики ВЧ сигнала до приемлемого уровня, и соответственно, улучшить параметры ВЧ тракта.

Следующие поколения каналообразующей аппаратуры стали передавать не только речь, но и сигналы телеуправления, защитные команды релейной защиты, противоаварийной автоматики, позволили организовать передачу данных.

Как отдельный вид ВЧ связь сформировалась в 40-ые, 50-ые годы прошлого столетия. Были разработаны международные стандарты (МЭК), руководящие указания для проектирования, разработки и производства оборудования. В 70-ые годы в СССР силами таких специалистов как Шкарин Ю.П., Скитальцев В.С. были разработан математические методики и рекомендации расчета параметров ВЧ трактов, что существенно упростило работу проектных организаций при проектировании ВЧ каналов и выборе частот, повысило технические характеристики вводимых ВЧ каналов.

До 2014 года ВЧ связь официально была основным видом связи электроэнергетики в Российской Федерации.

Появление и внедрение волоконно-оптических каналов связи, в условиях широкого распространения ВЧ связи, стало взаимодополняющим фактором в современной концепции развития сетей связи электроэнергетики. В настоящее время актуальность ВЧ связи остается на прежнем уровне, а интенсивное развитие и существенные инвестиции именно в оптическую инфраструктуру способствуют развитию и образованию новых сфер применения ВЧ связи.

Неоспоримые преимущества и наличие огромного положительного опыта применения ВЧ связи (почти 100 лет) дают основания полагать, что направление ВЧ будет актуально как в ближайшей так и в отдаленной перспективе, развитие же данного вида связи позволит решать как текущие задачи, так и способствовать развитию всей электроэнергетической отрасли.

Серия FOX предлагает современные решения на основе технологий первичных сетей SDH/PDH, спроектированные и испытанные для эксплуатации в жёстких условиях. Никакие другие мультиплексорные решения не обеспечивают такой широкий спектр специализированных продуктов - от телезащиты до гигабитного Ethernet с использованием технологии SDH и спектрального разделения.

Компания AББ уделяет особое внимание возможности модернизации продуктов для защиты капиталовложений и предлагает эффективные инструменты для технического обслуживания.

Комплексное коммуникационное решение серии FOX состоит из:

  • FOX505:Компактный мультиплексор доступа с пропускной способностью до STM-1.
  • FOX515/FOX615: Мультиплексор доступа с пропускной способностью до STM-4, обеспечивающий работу с широким диапазоном пользовательских интерфейсов для систем передачи данных и голоса. Реализация функций телезащиты и другие особенности, характерные для конкретной области применения, обеспечивают соблюдение всех требований по доступу к данным на предприятии.
  • FOX515H: Дополняет линейку FOX и предназначен для высокоскоростных линий связи.
  • FOX660: Мультисервисная платформа для систем передачи данных.

Все элементы серии FOX515 работают под управлением FOXMAN, унифицированной системы управления сетью компании ABB на основе SNMP. Ее открытая архитектура позволяет осуществлять интеграцию с системами управления сторонних поставщиков, как более высокого, так и более низкого уровня. Графическое отображение сети и управление по методу «указания и щелчка» делает систему FOXMAN идеальным решением для управления TDM и Ethernet на уровнях доступа и передачи данных.

Универсальная цифровая система ВЧ-связи ETL600 R4

ETL600 является современным решением вопроса обеспечения ВЧ-связи по ЛЭП для передачи речевых сигналов, данных и команд защиты по линиям высокого напряжения. Универсальная архитектура аппаратных и программных средств системы ETL600 делает беспредметным и устаревшим выбор между традиционным аналоговым и перспективным цифровым ВЧ-оборудованием. Используя те же самые аппаратные компоненты, пользователь может на месте выбрать цифровой или аналоговый рабочий режим посредством всего лишь нескольких нажатий клавиши мыши. В дополнение к удобству пользования, гибкости применения и беспрецедентной скорости передачи данных система ETL600 также гарантирует безусловную совместимость с существующей технологической средой и хорошо интегрируется в современные цифровые инфраструктуры связи.

Преимущества пользователя

  • Экономичное решение вопроса организации связи, обеспечивающее надежное управление и защиту энергосистемы.
  • Снижение затрат посредством общего резерва аппаратного оборудования и запасных частей для аналоговых и цифровых систем ВЧ-связи по ЛЭП.
  • Гибкая архитектура для легкой интеграции как в традиционное, так и в современное оборудование.
  • Надежная передача сигналов защиты
  • Эффективное использование ограниченных частотных ресурсов посредством гибкого выбора полосы передачи.
  • Резервное решение для выбранных критически-важных коммуникаций, которые обычно реализуются через широкополосные средства связи

Фильтр присоединения MCD80

Модульные устройства MCD80 применяются для соединения выводов устройства ВЧ связи, такого как AББ ETL600, через емкостной трансформатор напряжения к высоковольтным линиям.

Фильтр MCD80 обеспечивает оптимальное согласование импедансов для вывода линии ВЧ-связи, разделение частот и безопасную изоляцию частоты сети 50/60 Гц и переходных перенапряжений. Существует возможность конфигурирования для одно- и многофазной связи фильтрацией верхних частот или полосы пропускания. Устройства MCD80 соответствуют последним стандартам IEC и ANSI.

Основные преимущества фильтров MCD80:

  • Предназначены для работы с любыми типами аппаратуры ВЧ связи
  • Вся линейка фильтров: широкополосные, полосовые, разделительные, «фаза-фаза»Ю «фаза-земля»
  • Максимально возможный выбор полосы пропускания (по спецификации заказчика с шагом 1кГц)
  • Возможность присоединения, как к конденсаторам связи, так и трансформаторам напряжения
  • Широкий диапазон емкостей присоединения 1500пФ-20000пФ
  • Возможность перестройки на месте установки при изменении емкости присоединения в пределах рабочего диапазона емкостей (например, при замене конденсаторов на трансформаторы напряжения)
  • Низкое вносимое затухание в полосе пропускания (менее 1дБ)
  • Возможно параллельное подключение к одному ПФ до 9 терминалов мощностью 80 Вт по схеме фаза-земля и до 10 терминалов по схеме фаза-фаза
  • Встроенный однополюсный разъединитель (выключатель заземления)


ВЧ заградители для ВЛ-DLTC

Для защиты ВЧ-заградителей типа доступны два типа DLTC ограничителей перенапряжения.

Малые и среднеразмерные ВЧ-заградители оборудованы стандартными ограничителями перенапряжения AББ Polim-D без дуговых разрядников.

Крупные заградители оборудованы ограничителями ABB MVT, которые не имеют дугового разрядника и специально разработаны для использования с заградителями AББ. В них используются такие же чрезвычайно нелинейные металлооксидные варисторы (MO ограничители), что и в станционных ограничителях.

При проектировании блока настройки учитывается внутренняя утечка MO ограничителя. Металлооксидные ограничители перенапряжения AББ специально спроектированы для эксплуатации в сильных электромагнитных полях, которые часто присутствуют в ВЧ-заградителях линий связи по ЛЭП. В частности, они не содержат лишних металлических частей, в которых магнитное поле может индуцировать вихревые токи и вызвать недопустимое увеличение температуры. Модификация металлооксидных ограничителей перенапряжения для условий эксплуатации в заградителях на линиях ЛЭП была необходимой, так как компания AББ производит такие устройства для станций и полностью осведомлена о проблемах, которые возникают на практике. Ограничители перенапряжения, используемые в заградителях на линиях ЛЭП, имеют номинальный ток 10 кА.


Особенности и преимущества

Принципиальные преимущества ВЧ-заградителей линий ВЧ-связи типа DLTC

Информация с сайта



Цифровая система ВЧ связи MC04−PLC предназначена для организации каналов телемеханики (ТМ), передачи данных (ПД) и телефонных каналов (ТФ) по высоковольтным линиям электропередач (ЛЭП) распределительной сети 35/110 кВ. Аппаратура обеспечивает передачу данных по высокочастотному (ВЧ) каналу связи в полосе 4/8/12 кГц в диапазоне частот 16-1000 кГц. Присоединение к ЛЭП производится по схеме фаза - земля через конденсатор связи и фильтр присоединения. Подключение ВЧ окончания аппаратуры к фильтру присоединения несимметричное и выполняется одним коаксиальным кабелем.

Аппаратура изготавливается с разнесенным и смежным расположением полос пропускания направлений приема и передачи.


Функциональные возможности:

Количество ВЧ каналов шириной 4 кГц - до 3-х;
режим каналов: аналоговый (частотное разделение) и цифровой (временное разделение);
модуляция низкочастотного цифрового потока ‒ QAM с разделением на 88 поднесущих OFDM;
модуляция ВЧ спектра - амплитудная с передачей одной боковой полосы частот АМ ОБП;
адаптация битовой скорости цифрового потока (ЦП) к изменяющемуся отношению сигнал/шум;
интерфейсы телефонии: 4‒х проводные 4W, 2‒проводные FXS/FXO;
количество каналов телефонии в каждом ВЧ канале - до 3-х;
преобразование сигнализации АДАСЭ в абонентскую сигнализацию FXS/FXO;
диспетчерское и абонентское соединение по протоколу АДАСЭ по одному каналу ТФ;
цифровые интерфейсы ТМ и передачи данных: RS232, RS485, Ethernet;
интерфейс управления и мониторинга - Ethernet;
встроенный анализатор уровней передачи/приема ВЧ тракта, измеритель ошибок, температуры.
регистрация неисправностей и сигнализации в энергонезависимой памяти;
цифровой переприем ‒ транзит каналов на промежуточных подстанциях без потерь качества;
мониторинг ‒ программа MC04‒Monitor: конфигурация, настройка, диагностика;
удаленный мониторинг и конфигурирование через встроенный в ВЧ канал обслуживания;
поддержка SNMP ‒ при оснащении сетевым модулем S‒port;
радиальные и древовидные схемы мониторинга удаленных полукомплектов;
электропитание: сеть ~220 В/50 Гц или постоянное напряжение 48/60 В.

Основные параметры
Рабочий диапазон частот 16 – 1000 кГц
Ширина рабочей полосы 4/8/12 кГц
Номинальная пиковая мощность огибающей ВЧ сигнала 20/40 Вт
Максимальная скорость передачи ЦП в полосе 4 кГц (адаптивно) 23,3 кбит/с
Глубина регулировки АРУ при коэффициенте ошибок не более 10–6 не менее 40 дБ.
Допустимое затухание линии (с учетом помех) 50 дБ


Потребляемая мощность от сети питания 220 В или 48 В – не более 100 Вт.
Габаритные размеры блока − 485*135*215мм.
Вес не более 5 кг.


Условия эксплуатации:

− температура окружающего воздуха от +1 до + 45°С;
− относительная влажность воздуха до 80 % при температуре плюс 25°С;
− атмосферное давление не ниже 60 кПа (450 мм рт. ст.).

Конструкция и состав аппаратуры:


Цифровая трехканальная система ВЧ связи MC04−PLC включает два блока 19 дюймов высотой 3U, в которые устанавливаются следующие функционально–конструктивные узлы (платы):
ИП01− блок питания, сетевой вход 220В/50Гц, выход +48В,−48В,+12В;
ИП02− блок питания, вход 36…72В, выход +48В,−48В,+12В;
МП02− мультиплексор каналов ТМ, ПД, ТФ, кодек G.729, цифровой эхокомпенсатор;
МД02− модуляция/демодуляция ЦП в аналоговый ВЧ сигнал, мониторинг и управление;
ФПРМ − линейный трансформатор, аттенюатор и 4−х контурный фильтр ПРМ, усилитель ПРМ;
ФПРД – 1/2−х контурный фильтр ПРД, высокоомный импеданс вне полосы ПРД;
УМ02− усилитель мощности, цифровая индикация уровней ПРД, индикация аварий.
ТР01 − транзит содержимого ВЧ канала между блоками, устанавливается на место плат МП02.

Информация для заказа

Количество плат МП02 соответствует количеству базовых ВЧ каналов с полосой 4 кГц, конфигурируемых на плате МД02 − от 1 до 3. В случае транзита одного из ВЧ каналов между блоками на промежуточной подстанции на место платы МП02 устанавливается плата транзита ТР01, обеспечивающая прием/передачу содержимого ВЧ канала без преобразования в аналоговую форму.
Блок имеет два основных исполнения по пиковой мощности огибающей ВЧ сигнала:
1P − установлен один усилитель УМ02 и один фильтр ФПРД, мощность ВЧ сигнала – 20 Вт;
2P − установлены два усилителя УМ02 и два фильтра ФПРД, мощность ВЧ сигнала – 40 Вт.

Обозначение блока включает:
– количество задействованных ВЧ каналов 1/2/3;
– исполнение по пиковой мощности огибающей ВЧ сигнала: 1P – 20 Вт или 2P – 40 Вт;
– типы пользовательских стыков каждого из 3‒х ВЧ каналов / плат МП‒02 или плата ТР01;
– напряжение питания блока ‒ сеть ~220 В или постоянное напряжение 48 В.
На плате МП–02 по умолчанию имеются цифровые интерфейсы RS232 и Ethernet, которые в обозначении блока не указываются.



gastroguru © 2017