Технологии Token Ring и FDDI. Сети Token Ring Технология Типы кадров технологии Token Ring

Token Ring технология (маркерное кольцо) была разработана фирмой IBM в конце 1970-х годов. Спецификации IEEE 802.5 практически повторяют фирменные спецификации, отличаясь лишь в некоторых деталях (например, IEEE 802.5 не оговаривает среду передачи и топологию сети, а фирменный стандарт определяет крученную вару как среду и звезду как физическая топология).

Сети Token Ring могут работать на одной из двух битовых скоростей: 4 Мбит/с (IEEE 802.5) или 16 Мбит/с (IEEE 802.5r). В одном кольце могут быть присутствует только станции, которые работают на одной скорости.

Token Ring определяет логическую топологию “кольцо”: каждая станция связана с двумя соседними. Физически же станции соединяются в звездообразную сеть, в центре которой находится устройство многостанционного доступа (MSAU, Multi-Station Access Unit), в сущности являются повторителем. Как правило, MSAU умеет исключать неработающую станцию из кольца (для этого используется шунтирующее реле). MSAU имеют также отдельные разъемы для объединения нескольких MSAU в одно большое кольцо.

Максимальное количество станций в кольце – 250 (IEEE 802.5), 260 (IBM Token Ring, кабель STP) и 72 (IBM Token Ring, кабель UTP).
Максимальная длина кольца Token Ring составляет 4000 м.

В конце 1990-х годов компанией IBM разработан новый вариант технологии Token Ring – High Speed Token Ring (HSTR), что поддерживает скорости в 100 и 155 Мбит/с. Ведутся разработки версии Token Ring со скоростью в 1 Гбит/с.

Маркерный метод доступа

Token Ring – это самая распространенная технология локальной сети с передачей маркера. В таких сетях циркулирует (передается станциями друг другу в определенном порядке) специальный блок данных – маркер (token). Станция, которая приняла маркер, имеет право передавать свои данные. Для этого она изменяет в маркере один бит (“маркер занят”), добавляет к нему свои данные и передает в сеть (следующие станции). Станции передают такой кадр далее по кольце, пока он не достигнет получателя, который скопирует из него данные и передаст дальше. Когда отправитель получает свой кадр с данными, который сделал полный круг, он его отбрасывает и или передает новый кадр данных (если не минуло максимальное время владения маркером), или изменяет бит занятости маркера на “свободный” и передает маркер далее по кольце.

В течение всего времени владения маркером, к и после передачи своего кадра, станция должна выдавать последовательность, которая заполняет (fill sequence), - произвольную последовательность 0 и 1. Это делается для поддержки синхронизации и контроля за обрывом кольца.

Основной режим работы адаптера - повторение: передатчик побитно выдает данные, которые поступили к приемнику. Когда в станции есть кадр для передачи и принят свободный маркер, станция переходит в режим передачи, при этом битовый поток, который поступает через приемник, анализируется на служебные кадры и или (если обнаружен служебный кадр) инициирующее прерывание (прекращение передачи своего кадра и выдача кадра прерывания), или приняты данные отбрасываются.

В сетях Token Ring 4 Мбит/со станция освобождала маркер только по возвращении ее кадра данных. Сети Token Ring 16 Мбит/с используют алгоритм раннего освобождения маркера (Early Token Release): маркер передается в кольцо сразу по окончании передачи кадру данных. При этом по кольцу одновременно передается несколько кадров данных, но генерировать их в каждый момент времени может только одна станция, которая владеет в этот момент маркером.

За правильной работой сети следит активный монитор (Active Monitor, AM), избираемый во время инициализации кольца как станция с максимальным MAC-адресою. В случае отказа активного монитора, проводятся выборы нового (все станции в сети, кроме активного монитора, считаются резервными мониторами (Standby monitor)). Основная функция активного монитора – контроль наличия единственного маркера в кольце. Монитор выпускает в кольцо маркер и удаляет кадры, которые прошли больше одного оборота по кольцу. Чтобы сообщить другие станции о себе, активный монитор периодически передает служебный кадр AMP. Если за время какой-то (достаточный для оборота маркера по кольцу) маркер не вернется к активному монитору, маркер считается затерянным, и активный монитор генерирует новый маркер.

На режим передачи кадров влияют отмеченные в стандарте максимальные интервалы времени, за соблюдением которых следят специальные таймеры в сетевых адаптерах (приведены значения за умалчиванием, администратор сети может их изменять):

  1. время содержания маркера (Token Holding, THT) – 8,9 мс; по окончании этого интервала станция должна прекратить передачу своих данных (текущий кадр можно передать) и освободить маркер; за время содержания маркера станция может передать несколько (небольших) кадров;
  2. допустимое время передачи кадру (Valid Transmission, TVX) – 10 мс; максимальное время, в которое должна заключиться передача одного кадра; контролируется активным монитором;
  3. время ожидания свободного маркера (No Token, TNT) – 2,6 с; время ожидания свободного маркера активным монитором; если за это время маркер не появится, активный монитор выполняет очистку кольца и генерирует новый маркер;
  4. период посылки AMP (Active Monitor, TAM) – 7 с;
  5. время ожидания AMP (Standby Monitor Detect AMP, TSM) – 16 с; если за этот интервал не было ни одного кадра AMP, инициирующие выборы нового активного монитора.

Форматы кадров Token Ring

Token Ring определяет три типа кадров: маркер, кадр данных (служебных или пользовательских) и прерывания.

Кадр данных

Прерывание

Рис.8.1. Форматы кадров Token Ring

Поле SD (Starting Delimiter, начальное ограничение) указывает на начало кадра и имеет значение JK0JK000 в манчестерском коде. Поскольку в поле присутствуют специальных кодов J и K, последовательность данных нельзя попутать с ограничением кадру.

Поле ED (Ending Delimiter, конечное ограничение) имеет значение JK1JK1IE, где бит I (Intermediate, промежуточный) указывает, является ли кадр промежуточным в последовательности кадров (I=1) или останнім/єдиним (I=0), а бит E (Error, ошибка) указывает на обнаруженную ошибку (E=1).

Поле AC (Access Control, управление доступом) имеет формат PPPTMRRR, где биты PPP (Priority, приоритет) содержат приоритет маркера, бит T (Token, маркер) отличает свободный маркер (T=1) от кадра данных (T=0), бит M (Monitor, монитор) используется для распознавания кадров, которые сделали больше одного оборота по кольцу: монитор устанавливает M=1 во всех проходящих через него кадрах (другие станции устанавливают M=0), а кадры из M=1 должны удаляться монитором. Биты RRR (Priority reservation, резервирование) несут приоритет станции, которая желает захватить маркер.

Поле FC (Frame Control, управление кадром) имеет формат FFZZZZZZ. Биты FF определяют тип кадра:

  1. 00 – кадр данных со служебной информацией (MAC-кадр);
  2. 01 – кадр данных пользователя (LLC-кадр);
  3. 10, 11 - резерв.

Биты ZZZZZZ используются LLC-кадрами для хранения информации о приоритете кадра уровня LLC. MAC-кадри в этих битах хранят свой тип. IEEE 802.5 определяет 25 типов MAC-кадрів, среди которых основные:

  1. CT (Claim Token, заявка на создание маркера) – отправляется резервным монитором при подозрении об отказе активного монитора;
  2. DAT (Duplicate Address Test, тест на дублирование адреса) – отправляется станцией при подключении к кольцу для проверки уникальности своего адреса;
  3. AMP (Active Monitor Present, является присутствует активный монитор) – регулярно (раз в 7 с) отправляется активным монитором для подтверждения своего присутствия;
  4. SMP (Standby Monitor Present, является присутствует резервный монитор) – ответ на кадр AMP;
  5. BCN (Beacon, бакен) – отправляется станцией, которая обнаружила сетевую проблему (тишину или бесконечный поток, который может указывать на обрыв кабеля, наличие неисправного адаптера у одной из станций и тому подобное);
  6. PRG (Purge, очистка) – сигнал от активного монитора об очистке кольца от всех кадров.

Поле DA (Destination Address, адрес назначения) имеет структуру, подобную структуре адреса в стандарте IEEE 802.3. Старший бит адреса определяет получателя: 0 - индивидуальный (одна станция), 1 - групповой. Второй бит адреса определяет способ назначения адреса: 0 - глобально (универсально, зашито в ПЗП адаптера), 1 - локально. Другие биты используются для указания адреса станции, кольца или группы получателей. Несколько адресов зарезервировано для служебных целей:
FF FF FF FF FF FF – широковещательный кадр (всем станциям)
C0 00 FF FF FF FF – широковещательный MAC-кадр
C0 00 00 00 00 01 – активный монитор
C0 00 00 00 00 02 – сервер параметров кольца
C0 00 00 00 00 08 – монитор ошибок кольца
C0 00 00 00 00 10 – сервер отчетов о конфигурации
C0 00 00 00 01 00 – мост
C0 00 00 00 20 00 – управление сетью.

Поле SA (Source Address, адрес источника) имеет тот же формат, что и адрес назначения, за исключением старшего бита. В адресе источника старший бит называется RII (Routing Information Indicator) и указывает (если RII=1) на наличие данных в поле RI.

Поле RI (Routing Information, маршрутная информация), если используется (RII=1), содержит последовательность (двохбайтних) адресов сегментов на пути к получателю. Данные этого поля управляют работой мостов в режиме маршрутизации от источника.

Поле Info содержит или данные пользователя (кадр LLC), или служебные данные, обусловленные типом кадра (кадр MAC). Стандарт не ограничивает размер этого поля, хотя практически его максимальный размер определяется соотношением времен передачи кадру и содержания маркера. Для 4 Мбит/с максимальный размер кадра обычно устанавливается в 4 Кбайт, а для 16 Мбит/с - в 16 Кбайт. Минимальный размер поля данные не определенный.

Поле FCS (Frame Check Sequence, контрольная сумма) хранит 4-байтный CRC-код для всех полей из FC по Info включительно.

Поле FS (Frame Status, статус кадра) имеет формат AСrrACrr. Биты rr зарезервированы и не используются, другие биты дублируются для надежности. Бит A (Address Recognized, адрес распознан) указывает на то, что получатель кадра присутствует в кольце, а бит C (Frame Copied, кадр скопирован) указывает на то, что приемник скопировал кадр себе в буфер. По этим полям станция-отправитель может узнать, что передан ею кадр был получен.

Система приоритетного доступа

Сети Token Ring гарантируют, что каждая станция будет получать право на передачу данных не реже, чем раз в установленный интервал времени. Кроме того, используется система приоритетов, что позволяет некоторым станциям пользоваться сетью чаще других. Для этого в кадре Token Ring выделены два поля: полет приоритету и полет резервирование. Всего уровней приоритета восемь: от более низкого (0) к более высокому (7). Маркер тоже всегда имеет некоторый уровень приоритета. Станция может захватить маркер только в том случае, если приоритет кадра, что она собирается передать, не ниже приоритету маркера (битов PPP поля AC).
Станция, которая захватила маркер, хранит старое значение его приоритета, записывает у него приоритет своего кадра и обнуляет поле резервирования. Если в кольце есть станция, которая желает передать кадр из больше высоким приоритетом, то она записывает приоритет своего кадра в поле резервирования проходящего по кольцу кадра, в результате чего после оборота по кольцу в поле резервирования будет записан максимальный приоритет из кадров, которые ожидают передачи. Тогда станция переписывает приоритет из поля резервирования в поле приоритета маркера и выдает свободный маркер в кольцо (захватить такой маркер сможет только станция с кадром отмеченного приоритета).

Станция, которая повышает приоритет маркера, становится запоминающей станцией (stacking station) и организует стек для хранения еще необслуживаемых низких приоритетов. Когда через такую станцию проходит свободный маркер с приоритетом, ровным приоритету на верхушке стека, она вытягивает следующее значение из стека и снижает приоритет маркера к нему.

Механизм приоритетов в сетях Token Ring не является обязательным к использованию. Как правило, большинство дополнений им не пользуется, и кольцо работает в неприоритетном режиме (приоритет маркера всегда равняется 0). Существует тенденция к переносу механизмов приоритетного обслуживания на уровне, выше канального (приоритетное обслуживание могут обеспечивать, например, маршрутизаторы).

При построении больших сетей Тoken Ring придется использовать большое количество колец. Отдельные кольца связываются один с одним, как и в других сетях, с помощью мостов. Мосты бывают "прозрачными" (IEEE 802.1d) и с маршрутизацией от источника. Последние позволяют связать в единственную сеть несколько колец, которые используют общую сетевую IPX- или IP-адресу.

Использование мостов позволяет перебороть и ограничение на число станций в сети (260 для спецификации IBM и 250 для IEEE). Мосты могут связывать между собой фрагменты сетей, которые используют разные протоколы, например, 802.5, 802.4 и 802.3. Пакеты из кольца 1 адресованные объекту этого же кольца никогда не попадут в кольцо 2 и наоборот. Через мост пройдут лишь пакеты, которые адресованы объектам соседнего кольца. Фильтрация пакетов осуществляется по физическому адресу и номеру порта. На основе этих данных формируется собственная база данных, которая содержит информацию об объектах колец, подключенных к мосту. Схема распределения сети с помощью мостов может способствовать снижению эффективной загрузки сети.

Мосты с маршрутизацией от источника могут совмещать только сети Token Ring, а маршрутизация пакетов полагается на все устройства, которые посылают информацию в сеть (отсюда и название этого вида мостов). Это значит, что в каждом из сетевых устройств должно быть загружено программное обеспечение, что позволяет маршрутизовать пакеты от отправителя к получателю. Эти мосты не создают собственные базы данных о расположении сетевых объектов и посылают пакет в соседнее кольцо на основе маршрутного указания, что поступило от отправителя самого пакета. Таким образом, база данных о расположении сетевых объектов оказывается распределенной между станциями, которые хранят собственные маршрутные таблицы. Программы маршрутизации используют сетевой драйвер адаптера. Мосты с маршрутизацией от источника пересматривают все кадры, которые поступают, и отбирают те, которые имеют индикатор информации о маршруте RII=1. Такие кадры копируются, и по информации о маршруте определяется, нужно ли их посылать дальше. Мосты с маршрутизацией от источника могут быть настроены на широковещательную передачу по всем маршрутам, или на широковещательную передачу по одном маршруте.

В сетях со сложной топологией маршруты формируются в соответствии с иерархическим протоколом STP (Spanning Tree Protocol). Этот протокол организует маршруты динамически с выбором оптимального маршрута, если адресат доступен несколькими путями. При этом минимизируется транзитный трафик.

Сети стандарта Token Ring, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с.

Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер (токен) .

Получив маркер, станция анализирует его, при необходимости модифицирует и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой.

При поступлении кадра данных к одной или нескольким станциям, эти станции копируют для себя этот кадр и вставляют в этот кадр подтверждение приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и выдает новый маркер для обеспечения возможности другим станциям сети передавать данные.

В сетях Token Ring 16 Мб/с используется несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера. В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80 % от номинальной.

Для различных видов сообщений передаваемым данным могут назначаться различные приоритеты.

Каждая станция имеет механизмы обнаружения и устранения неисправностей сети, возникающих в результате ошибок передачи или переходных явлений (например, при подключении и отключении станции).

Не все станции в кольце равны. Одна из станций обозначается как активный монитор, что означает дополнительную ответственность по управлению кольцом. Активный монитор осуществляет управление тайм-аутом в кольце, порождает новые маркеры (если необходимо), чтобы сохранить рабочее состояние, и генерирует диагностические кадры при определенных обстоятельствах. Активный монитор выбирается, когда кольцо инициализируется, и в этом качестве может выступить любая станция сети. Если монитор отказал по какой-либо причине, существует механизм, с помощью которого другие станции (резервные мониторы) могут договориться, какая из них будет новым активным монитором.


В Token Ring существует три различных формата кадров:

Кадp данных;

Пpеpывающая последовательность.

Сеть Token-Ring (маркерное кольцо) была предложена компанией IBM в 1985 году (первый вариант появился в 1980 году). Она предназначалась для объединения в сеть всех типов компьютеров, выпускаемых IBM. Уже тот факт, что ее поддерживает компания IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5 (хотя между Token-Ring и IEEE 802.5 есть незначительные отличия). Это ставит данную сеть на один уровень по статусу с Ethernet.

Разрабатывалась Token-Ring как надежная альтернатива Ethernet. И хотя сейчас Ethernet вытесняет все остальные сети, Token-Ring нельзя считать безнадежно устаревшей. Более 10 миллионов компьютеров по всему миру объединены этой сетью.

Компания IBM сделала все для максимально широкого распространения своей сети: была выпущена подробная документация вплоть до принципиальных схем адаптеров. В результате многие компании, например, 3СOM, Novell, Western Digital, Proteon и другие приступили к производству адаптеров. Кстати, специально для этой сети, а также для другой сети IBM PC Network была разработана концепция NetBIOS. Если в созданной ранее сети PC Network программы NetBIOS хранились во встроенной в адаптер постоянной памяти, то в сети Token-Ring уже применялась эмулирующая NetBIOS программа. Это позволило более гибко реагировать на особенности аппаратуры и поддерживать совместимость с программами более высокого уровня.

Сеть Token-Ring имеет топологию кольцо, хотя внешне она больше напоминает звезду. Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не напрямую, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU – Multistation Access Unit). Физически сеть образует звездно-кольцевую топологию (рис. 7.3). В действительности же абоненты объединяются все-таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого.

Рис. 7.3. Звездно-кольцевая топология сети Token-Ring

Концентратор (MAU) при этом позволяет централизовать задание конфигурации, отключение неисправных абонентов, контроль работы сети и т.д. (рис. 7.4). Никакой обработки информации он не производит.

Рис. 7.4. Соединение абонентов сети Token-Ring в кольцо с помощью концентратора (MAU)

Для каждого абонента в составе концентратора применяется специальный блок подключения к магистрали (TCU – Trunk Coupling Unit), который обеспечивает автоматическое включение абонента в кольцо, если он подключен к концентратору и исправен. Если абонент отключается от концентратора или же он неисправен, то блок TCU автоматически восстанавливает целостность кольца без участия данного абонента. Срабатывает TCU по сигналу постоянного тока (так называемый "фантомный" ток), который приходит от абонента, желающего включиться в кольцо. Абонент может также отключиться от кольца и провести процедуру самотестирования (крайний правый абонент на рис. 7.4). "Фантомный" ток никак не влияет на информационный сигнал, так как сигнал в кольце не имеет постоянной составляющей.

Конструктивно концентратор представляет собой автономный блок с десятью разъемами на передней панели (рис. 7.5).

Рис. 7.5. Концентратор Token-Ring (8228 MAU)

Восемь центральных разъемов (1...8) предназначены для подключения абонентов (компьютеров) с помощью адаптерных (Adapter cable) или радиальных кабелей. Два крайних разъема: входной RI (Ring In) и выходной RO (Ring Out) служат для подключения к другим концентраторам с помощью специальных магистральных кабелей (Path cable). Предлагаются настенный и настольный варианты концентратора.

Существуют как пассивные, так и активные концентраторы MAU. Активный концентратор восстанавливает сигнал, приходящий от абонента (то есть работает, как концентратор Ethernet). Пассивный концентратор не выполняет восстановление сигнала, только перекоммутирует линии связи.

Концентратор в сети может быть единственным (как на рис.7.4), в этом случае в кольцо замыкаются только абоненты, подключенные к нему. Внешне такая топология выглядит, как звезда. Если же нужно подключить к сети более восьми абонентов, то несколько концентраторов соединяются магистральными кабелями и образуют звездно-кольцевую топологию.

Как уже отмечалось, кольцевая топология очень чувствительна к обрывам кабеля кольца. Для повышения живучести сети, в Token-Ring предусмотрен режим так называемого сворачивания кольца, что позволяет обойти место обрыва.

В нормальном режиме концентраторы соединены в кольцо двумя параллельными кабелями, но передача информации производится при этом только по одному из них (рис. 7.6).

Рис. 7.6. Объединение концентраторов MAU в нормальном режиме

В случае одиночного повреждения (обрыва) кабеля сеть осуществляет передачу по обоим кабелям, обходя тем самым поврежденный участок. При этом даже сохраняется порядок обхода абонентов, подключенных к концентраторам (рис. 7.7). Правда, увеличивается суммарная длина кольца.

В случае множественных повреждений кабеля сеть распадается на несколько частей (сегментов), не связанных между собой, но сохраняющих полную работоспособность (рис. 7.8). Максимальная часть сети остается при этом связанной, как и прежде. Конечно, это уже не спасает сеть в целом, но позволяет при правильном распределении абонентов по концентраторам сохранять значительную часть функций поврежденной сети.

Несколько концентраторов может конструктивно объединяться в группу, кластер (cluster), внутри которого абоненты также соединены в кольцо. Применение кластеров позволяет увеличивать количество абонентов, подключенных к одному центру, например, до 16 (если в кластер входит два концентратора).

Рис. 7.7. Сворачивание кольца при повреждении кабеля

Рис. 7.8. Распад кольца при множественных повреждениях кабеля

В качестве среды передачи в сети IBM Token-Ring сначала применялась витая пара, как неэкранированная (UTP), так и экранированная (STP), но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI.

Основные технические характеристики классического варианта сети Token-Ring:

    максимальное количество концентраторов типа IBM 8228 MAU – 12;

    максимальное количество абонентов в сети – 96;

    максимальная длина кабеля между абонентом и концентратором – 45 метров;

    максимальная длина кабеля между концентраторами – 45 метров;

    максимальная длина кабеля, соединяющего все концентраторы – 120 метров;

    скорость передачи данных – 4 Мбит/с и 16 Мбит/с.

Все приведенные характеристики относятся к случаю использования неэкранированной витой пары. Если применяется другая среда передачи, характеристики сети могут отличаться. Например, при использовании экранированной витой пары (STP) количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля – до 100 метров (вместо 45), количество концентраторов – до 33, а полная длина кольца, соединяющего концентраторы – до 200 метров. Оптоволоконный кабель позволяет увеличивать длину кабеля до двух километров.

Для передачи информации в Token-Ring применяется бифазный код (точнее, его вариант с обязательным переходом в центре битового интервала). Как и в любой звездообразной топологии, никаких дополнительных мер по электрическому согласованию и внешнему заземлению не требуется. Согласование выполняется аппаратурой сетевых адаптеров и концентраторов.

Для присоединения кабелей в Token-Ring используются разъемы RJ-45 (для неэкранированной витой пары), а также MIC и DB9P. Провода в кабеле соединяют одноименные контакты разъемов (то есть используются так называемые "прямые" кабели).

Сеть Token-Ring в классическом варианте уступает сети Ethernet как по допустимому размеру, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время имеются версии Token-Ring на скорость 100 Мбит/с (High Speed Token-Ring, HSTR) и на 1000 Мбит/с (Gigabit Token-Ring). Компании, поддерживающие Token-Ring (среди которых IBM, Olicom, Madge), не намерены отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet.

По сравнению с аппаратурой Ethernet аппаратура Token-Ring заметно дороже, так как используется более сложный метод управления обменом, поэтому сеть Token-Ring не получила столь широкого распространения.

Однако в отличие от Ethernet сеть Token-Ring значительно лучше держит высокий уровень нагрузки (более 30-40%) и обеспечивает гарантированное время доступа. Это необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям.

В сети Token-Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных (см. рис. 7.8). Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но есть и недостатки, в частности необходимость контроля целостности маркера и зависимость функционирования сети от каждого абонента (в случае неисправности абонент обязательно должен быть исключен из кольца).

Предельное время передачи пакета в Token-Ring 10 мс. При максимальном количестве абонентов 260 полный цикл работы кольца составит 260 x 10 мс = 2,6 с. За это время все 260 абонентов смогут передать свои пакеты (если, конечно, им есть чего передавать). За это же время свободный маркер обязательно дойдет до каждого абонента. Этот же интервал является верхним пределом времени доступа Token-Ring.

Каждый абонент сети (его сетевой адаптер) должен выполнять следующие функции:

    выявление ошибок передачи;

    контроль конфигурации сети (восстановление сети при выходе из строя того абонента, который предшествует ему в кольце);

    контроль многочисленных временных соотношений, принятых в сети.

Большое количество функций, конечно, усложняет и удорожает аппаратуру сетевого адаптера.

Для контроля целостности маркера в сети используется один из абонентов (так называемый активный монитор). При этом его аппаратура ничем не отличается от остальных, но его программные средства следят за временными соотношениями в сети и формируют в случае необходимости новый маркер.

Активный монитор выполняет следующие функции:

    запускает в кольцо маркер в начале работы и при его исчезновении;

    регулярно (раз в 7 с) сообщает о своем присутствии специальным управляющим пакетом (AMP – Active Monitor Present);

    удаляет из кольца пакет, который не был удален пославшим его абонентом;

    следит за допустимым временем передачи пакета.

Активный монитор выбирается при инициализации сети, им может быть любой компьютер сети, но, как правило, становится первый включенный в сеть абонент. Абонент, ставший активным монитором, включает в сеть свой буфер (сдвиговый регистр), который гарантирует, что маркер будет умещаться в кольце даже при минимальной длине кольца. Размер этого буфера – 24 бита для скорости 4 Мбит/с и 32 бита для скорости 16 Мбит/с.

Каждый абонент постоянно следит за тем, как активный монитор выполняет свои обязанности. Если активный монитор по какой-то причине выходит из строя, то включается специальный механизм, посредством которого все другие абоненты (запасные, резервные мониторы) принимают решение о назначении нового активного монитора. Для этого абонент, обнаруживший аварию активного монитора, передает по кольцу управляющий пакет (пакет запроса маркера) со своим MAC-адресом. Каждый следующий абонент сравнивает MAC-адрес из пакета с собственным. Если его собственный адрес меньше, он передает пакет дальше без изменений. Если же больше, то он устанавливает в пакете свой MAC-адрес. Активным монитором станет тот абонент, у которого значение MAC-адреса больше, чем у остальных (он должен трижды получить обратно пакет со своим MAC-адресом). Признаком выхода из строя активного монитора является невыполнение им одной из перечисленных функций.

Маркер сети Token-Ring представляет собой управляющий пакет, содержащий всего три байта (рис. 7.9): байт начального разделителя (SD – Start Delimiter), байт управления доступом (AC – Access Control) и байт конечного разделителя (ED – End Delimiter). Все эти три байта входят также в состав информационного пакета, правда, функции их в маркере и в пакете несколько различаются.

Начальный и конечный разделители представляют собой не просто последовательность нулей и единиц, а содержат сигналы специального вида. Это было сделано для того, чтобы разделители нельзя было спутать ни с какими другими байтами пакетов.

Рис. 7.9. Формат маркера сети Token-Ring

Начальный разделитель SD содержит четыре нестандартных битовых интервала (рис. 7.10). Два из них, обозначающихся J, представляют собой низкий уровень сигнала в течение всего битового интервала. Два других бита, обозначающихся К, представляют собой высокий уровень сигнала в течение всего битового интервала. Понятно, что такие сбои в синхронизации легко выявляются приемником. Биты J и K никогда не могут встречаться среди битов полезной информации.

Рис. 7.10. Форматы начального (SD) и конечного (ED) разделителей

Конечный разделитель ED также содержит в себе четыре бита специального вида (два бита J и два бита K), а также два единичных бита. Но, кроме того, в него входят и два информационных бита, которые имеют смысл только в составе информационного пакета:

    Бит I (Intermediate) представляет собой признак промежуточного пакета (1 соответствует первому в цепочке или промежуточному пакету, 0 – последнему в цепочке или единственному пакету).

    Бит E (Error) является признаком обнаруженной ошибки (0 соответствует отсутствию ошибок, 1 – их наличию).

Байт управления доступом (AC – Access Control) разделен на четыре поля (рис. 7.11): поле приоритета (три бита), бит маркера, бит монитора и поле резервирования (три бита).

Рис. 7.11. Формат байта управления доступом

Биты (поле) приоритета позволяют абоненту присваивать приоритет своим пакетам или маркеру (приоритет может быть от 0 до 7, причем 7 соответствует наивысшему приоритету, а 0 – низшему). Абонент может присоединить к маркеру свой пакет только тогда, когда его собственный приоритет (приоритет его пакетов) такой же или выше приоритета маркера.

Бит маркера определяет, присоединен ли к маркеру пакет или нет (единица соответствует маркеру без пакета, нуль – маркеру с пакетом). Бит монитора, установленный в единицу, говорит о том, что данный маркер передан активным монитором.

Биты (поле) резервирования позволяют абоненту зарезервировать свое право на дальнейший захват сети, то есть занять очередь на обслуживание. Если приоритет абонента (приоритет его пакетов) выше, чем текущее значение поля резервирования, то он может записать туда свой приоритет вместо прежнего. После обхода по кольцу в поле резервирования будет записан наивысший приоритет из всех абонентов. Содержимое поля резервирования аналогично содержимому поля приоритета, но говорит о будущем приоритете.

В результате использования полей приоритета и резервирования обеспечивается возможность доступа к сети только абонентам, имеющим пакеты для передачи с наивысшим приоритетом. Менее приоритетные пакеты будут обслуживаться только по исчерпании более приоритетных пакетов.

Формат информационного пакета (кадра) Token-Ring представлен на рис. 7.12. Помимо начального и конечного разделителей, а также байта управления доступом в этот пакет входят также байт управления пакетом, сетевые адреса приемника и передатчика, данные, контрольная сумма и байт состояния пакета.

Рис. 7.12. Формат пакета (кадра) сети Token-Ring (длина полей дана в байтах)

Назначение полей пакета (кадра).

    Начальный разделитель (SD) является признаком начала пакета, формат – такой же, как и в маркере.

    Байт управления доступом (AC) имеет тот же формат, что и в маркере.

    Байт управления пакетом (FC – Frame Control) определяет тип пакета (кадра).

    Шестибайтовые MAC-адреса отправителя и получателя пакета имеют стандартный формат, описанный в лекции 3.

    Поле данных (Data) включает в себя передаваемые данные (в информационном пакете) или информацию для управления обменом (в управляющем пакете).

    Поле контрольной суммы (FCS – Frame Check Sequence) представляет собой 32-разрядную циклическую контрольную сумму пакета (CRC).

    Конечный разделитель (ED), как и в маркере, указывает на конец пакета. Кроме того, он определяет, является ли данный пакет промежуточным или заключительным в последовательности передаваемых пакетов, а также содержит признак ошибочности пакета (см. рис. 7.10).

    Байт состояния пакета (FS – Frame Status) говорит о том, что происходило с данным пакетом: был ли он увиден приемником (то есть, существует ли приемник с заданным адресом) и скопирован в память приемника. По нему отправитель пакета узнает, дошел ли пакет по назначению и без ошибок или его надо передавать заново.

Следует отметить, что больший допустимый размер передаваемых данных в одном пакете по сравнению с сетью Ethernet может стать решающим фактором для увеличения производительности сети. Теоретически для скоростей передачи 16 Мбит/с и 100 Мбит/с длина поля данных может достигать даже 18 Кбайт, что принципиально при передаче больших объемов данных. Но даже при скорости 4 Мбит/с благодаря маркерному методу доступа сеть Token-Ring часто обеспечивает большую фактическую скорость передачи, чем сеть Ethernet (10 Мбит/с). Особенно заметно преимущество Token-Ring при больших нагрузках (свыше 30-40%), так как в этом случае метод CSMA/CD требует много времени на разрешение повторных конфликтов.

Абонент, желающий передавать пакет, ждет прихода свободного маркера и захватывает его. Захваченный маркер превращается в обрамление информационного пакета. Затем абонент передает информационный пакет в кольцо и ждет его возвращения. После этого он освобождает маркер и снова посылает его в сеть.

Помимо маркера и обычного пакета в сети Token-Ring может передаваться специальный управляющий пакет, служащий для прерывания передачи (Abort). Он может быть послан в любой момент и в любом месте потока данных. Пакет этот состоит из двух однобайтовых полей – начального (SD) и конечного (ED) разделителей описанного формата.

Интересно, что в более быстрой версии Token-Ring (16 Мбит/с и выше) применяется так называемый метод раннего формирования маркера (ETR – Early Token Release). Он позволяет избежать непроизводительного использования сети в то время, пока пакет данных не вернется по кольцу к своему отправителю.

Метод ETR сводится к тому, что сразу после передачи своего пакета, присоединенного к маркеру, любой абонент выдает в сеть новый свободный маркер. Другие абоненты могут начинать передачу своих пакетов сразу же после окончания пакета предыдущего абонента, не дожидаясь, пока он завершит обход всего кольца сети. В результате в сети может находиться несколько пакетов одновременно, но всегда будет не более одного свободного маркера. Этот конвейер особенно эффективен в сетях большой протяженности, имеющих значительную задержку распространения.

При подключении абонента к концентратору он выполняет процедуру автономного самотестирования и тестирования кабеля (в кольцо он пока не включается, так как нет сигнала "фантомного" тока). Абонент посылает сам себе ряд пакетов и проверяет правильность их прохождения (его вход напрямую соединен с его же выходом блоком TCU, как показано на рис. 7.4). После этого абонент включает себя в кольцо, посылая "фантомный" ток. В момент включения, передаваемый по кольцу пакет может быть испорчен. Далее абонент настраивает синхронизацию и проверяет наличие в сети активного монитора. Если активного монитора нет, абонент начинает состязание за право стать им. Затем абонент проверяет уникальность собственного адреса в кольце и собирает информацию о других абонентах. После чего он становится полноправным участником обмена по сети.

В процессе обмена каждый абонент следит за исправностью предыдущего абонента (по кольцу). Если он подозревает отказ предыдущего абонента, он запускает процедуру автоматического восстановления кольца. Специальный управляющий пакет (бакен) говорит предыдущему абоненту о необходимости провести самотестирование и, возможно, отключиться от кольца.

В сети Token-Ring предусмотрено также использование мостов и коммутаторов. Они применяются для разделения большого кольца на несколько кольцевых сегментов, имеющих возможность обмена пакетами между собой. Это позволяет снизить нагрузку на каждый сегмент и увеличить долю времени, предоставляемую каждому абоненту.

В результате можно сформировать распределенное кольцо, то есть объединение нескольких кольцевых сегментов одним большим магистральным кольцом (рис. 7.13) или же звездно-кольцевую структуру с центральным коммутатором, к которому подключены кольцевые сегменты (рис. 7.14).

Рис. 7.13. Объединение сегментов магистральным кольцом с помощью мостов

Рис. 7.14. Объединение сегментов центральным коммутатором

Стандарт Token Ring фирмы IBM изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU (Multistation Access Unit) или MSAU (Multi-Station Access Unit), то есть устройствами многостанционного доступа (рис. 3.15). Сеть Token Ring может включать до 260 узлов.

Рис. 3.15. Физическая конфигурация сети Token Ring

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет. Такое устройство можно считать простым кроссовым блоком за одним исключением - MSAU обеспечивает обход какого-либо порта, когда присоединенный к этому порту компьютер выключают. Такая функция необходима для обеспечения связности кольца вне зависимости от состояния подключенных компьютеров. Обычно обход порта выполняется за счет релейных схем, которые питаются постоянным током от сетевого адаптера, а при выключении сетевого адаптера нормально замкнутые контакты реле соединяют вход порта с его выходом.

Активный концентратор выполняет функции регенерации сигналов и поэтому иногда называется повторителем, как в стандарте Ethernet.

Возникает вопрос - если концентратор является пассивным устройством, то каким образом обеспечивается качественная передача сигналов на большие расстояния, которые возникают при включении в сеть нескольких сот компьютеров? Ответ состоит в том, что роль усилителя сигналов в этом случае берет на себя каждый сетевой адаптер, а роль ресинхронизирующего блока выполняет сетевой адаптер активного монитора кольца. Каждый сетевой адаптер Token Ring имеет блок повторения, который умеет регенерировать и ресинхронизировать сигналы, однако последнюю функцию выполняет в кольце только блок повторения активного монитора.

Блок ресинхронизации состоит из 30-битного буфера, который принимает манчестерские сигналы с несколько искаженными за время оборота по кольцу интервалами следования. При максимальном количестве станций в кольце (260) вариация задержки циркуляции бита по кольцу может достигать 3-битовых интервалов. Активный монитор «вставляет» свой буфер в кольцо и синхронизирует битовые сигналы, выдавая их на выход с требуемой частотой.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости - либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, - магистральными (trunk cable).


Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля: STP Type I, UTP Type 3, UTP Type 6, а также волоконно-оптический кабель.

При использовании экранированной витой пары STP Type 1 из номенклатуры кабельной системы IBM в кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров, а при использовании неэкранированной витой пары максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Type 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения во многом связаны со временем оборота маркера по кольцу (но не только -есть и другие соображения, диктующие выбор ограничений). Так, если кольцо состоит из 260 станций, то при времени удержания маркера в 10 мс маркер вернется в активный монитор в худшем случае через 2,6 с, а это время как раз составляет тайм-аут контроля оборота маркера. В принципе, все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Существует большое количество аппаратуры для сетей Token Ring, которая улучшает некоторые стандартные характеристики этих сетей: максимальную длину сети, расстояние между концентраторами, надежность (путем использования двойных колец).

Недавно компания IBM предложила новый вариант технологии Token Ring, названный High-Speed Token Ring, HSTR. Эта технология поддерживает битовые скорости в 100 и 155 Мбит/с, сохраняя основные особенности технологии Token Ring 16 Мбит/с.

Выводы

· Технология Token Ring развивается в основном компанией IBM и имеет также статус стандарта IEEE 802.5, который отражает наиболее важные усовершенствования, вносимые в технологию IBM.

· В сетях Token Ring используется маркерный метод доступа, который гарантирует каждой станции получение доступа к разделяемому кольцу в течение времени оборота маркера. Из-за этого свойства этот метод иногда называют детерминированным.

· Метод доступа основан на приоритетах: от 0 (низший) до 7 (высший). Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров.

· Сети Token Ring работают на двух скоростях: 4 и 16 Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а также волоконно-оптический кабель. Максимальное количество станций в кольце - 260, а максимальная длина кольца - 4 км.

· Технология Token Ring обладает элементами отказоустойчивости. За счет обратной связи кольца одна из станций - активный монитор - непрерывно контролирует наличие маркера, а также время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедура beaconing.

· Максимальный размер поля данных кадра Token Ring зависит от скорости работы кольца. Для скорости 4 Мбит/с он равен около 5000 байт, а при скорости 16 Мбит/с - около 16 Кбайт. Минимальный размер поля данных кадра не определен, то есть может быть равен 0.

· В сети Token Ring станции в кольцо объединяют с помощью концентраторов, называемых MSAU. Пассивный концентратор MSAU выполняет роль кроссовой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станции до MSAU - 100 м для STP и 45 м для UTP.

· Активный монитор выполняет в кольце также роль повторителя - он ресинхронизирует сигналы, проходящие по кольцу.

· Кольцо может быть построено на основе активного концентратора MSAU, который в этом случае называют повторителем.

· Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец.

Метод доступа «маркерное кольцо» (Token Ring) разработан компанией IBM и остается одной из основных технологий локальных сетей, хотя уже и не столь популярной, как Ethernet. Скорость передачи данных в старых версиях маркерных сетей равна 4 Мбит/с или 16 Мбит/с, а в новых скоростных сетях - 100 Мбит/с. Метод передачи данных в маркерном кольце использует топологию физической звезды в сочетании с логикой кольцевой топологии. Несмотря на то, что каждый узел подключается к центральному концентратору, пакет перемещается от узла к узлу так, будто начальная и конечная точки отсутствуют. Каждый узел соединяется с другими при помощи модуля множественного доступа (Multistation Access Unit, MAU). MAU - это специализированный концентратор, обеспечивающий передачу пакета по замкнутой цепочке компьютеров. Поскольку пакеты движутся по кольцу, на рабочих станциях или в модуле MAU отсутствуют терминаторы.

Маркер - специальный фрейм, который непрерывно передается по кольцу для определения момента, когда некоторый узел может отправить пакет. Этот фрейм имеет длину 24 бита и состоит из трех 8-битных полей: признака начала (SD), поля управления доступом (АС) и признака конца (ED). Признак начала - это комбинация сигналов, отличных от любых других сигналов сети, что предотвращает ошибочную интерпретацию поля. Он выглядит как сигнал отсутствия данных. Эта уникальная комбинация восьми разрядов может распознаваться только как признак начала фрейма (SOF).

Поле управления доступом (8-битное) указывает на то, прикреплен ли к маркеру фрейм, содержащий данные, то есть это поле определяет, несет ли фрейм данные или он свободен для использования некоторым узлом. Признак конца также представляет собой уникальным образом закодированный сигнал отсутствия данных. Его восемь разрядов представляют сигнал, который невозможно спутать с признаком начала или интерпретировать как данные. Эта часть маркера определяет, должен ли узел еще передавать последующие фреймы (идентификатор последнего фрейма). Также она содержит информацию об ошибках, обнаруженных другими станциями.

В большинстве реализаций в кольце может быть только один маркер, хотя спецификации IEЕЕ разрешают применение двух маркеров в сетях, работающих с частотой 16 Мбит/с и выше. Прежде чем некоторый узел начнет передачу, он должен перехватить маркер. Пока активный узел не закончит работу, ни один другой узел не может захватить маркер и передавать данные. Станция, захватившая маркер, создает фрейм, имеющий признак начала и поле управления доступом в начале этого фрейма. Признак конца помещается в конце данного фрейма. Полученный фрейм посылается по кольцу и передается до тех пор, пока не достигнет целевого узла. Целевой узел изменяет значения двух разрядов, указывая на то, что фрейм достиг пункта назначения, и что данные были прочитаны. Затем целевой узел помещает фрейм обратно в сеть, где тот передается по кольцу до тех пор, пока передающая станция не получит этот фрейм и не проверит факт его получения. После этого передающая станция формирует следующий фрейм с маркером и инкапсулированными данными или же создает маркер без данных, возвращая маркер в кольцо для того, чтобы другая станция могла его использовать.

На рис. 3.3 показан фрейм маркерного кольца с полями маркера, добавленными к полям данных. Первые 16 разрядов занимают поля признака начала и управления доступом. Затем следует поле управления фреймом. Это поле идентифицирует фрейм как фрейм данных или как фрейм, предназначенный для управления сетью (например, как фрейм, содержащий коды сетевых ошибок). Следующие два поля имеют длину 16 или 48 бит и используются для адресации. Первое поле содержит адрес узла назначения, а второе - адрес исходного узла. Далее идет поле данных маршрутизации (RIF), имеющее длину 144 бита или меньшую. Это поле содержит исходные данные маршрутизации, которые могут использоваться на Сетевом уровне модели OSI.

Рис. 3.3. Побитовое представление формата фрейма Token Ring 802.5

Следующие три поля - поле целевой точки доступа к службе (DSAP), поле исходной точки доступа к службе (SSAP) и поле управления (CTRL) - имеют такие же функции и размер, как и во фреймах 802.3 и Ethernet II. Поле DSAP определяет точку SAP узла назначения, а поле SSAP указывает, от какой точки доступа данный фрейм был послан, например Novell или TCP/IP. 8- или 16-битное поле управления определяет, содержит фрейм данные или информацию для управления ошибками. Поле данных следует за полем управления. Оно содержит данные или коды ошибок, используемые для управления сетью. Поле данных не имеет предопределенного размера. 32-бит-ное поле контрольной суммы (FCS) применяется для проверки целостности всего фрейма. Как и во фрейме Ethernet, в нем используется алгоритм контроля с избыточным кодированием (CRC), позволяющий гарантировать правильность передачи и получения сигнала. Контрольная сумма в полученном фрейме должна совпадать с посланным значением.

Последняя часть маркера - признак конца - следует за полем контрольной суммы фрейма. Это поле содержит информацию, сообщающую принимающему узлу о достижении конца фрейма. Также поле указывает на то, будет ли послан следующий фрейм из исходного узла или же данный фрейм последний. Кроме того, данное поле может содержать информацию о том, что другие станции обнаружили ошибки во фрейме. Если фрейм содержит ошибку, он удаляется из сети и затем посылается заново передающим узлом.

Последнее поле во фрейме маркерного кольца представляет собой 8-битное поле состояния фрейма. Два разряда этого поля особенно важны для передающего узла: разряд распознавания адреса указывает на то, что целевой узел "увидел" свой адрес, содержащийся во фрейме; разряд копирования фрейма определяет, скопировал ли целевой узел посланный фрейм или же при этом были ошибки.

В каждом маркерном кольце один узел выполняет функции монитора активности или диспетчера. Обычно эти задачи выполняет первая станция, обнаруженная после запуска сети. Диспетчер отвечает за синхронизацию пакетов в сети и за генерацию нового фрейма маркера в случае возникновения проблем. Через интервалы в несколько секунд диспетчер рассылает широко-вещательный фрейм подуровня MAC, свидетельствующий о работоспособности диспетчера. Широковещательный фрейм или пакет адресуется всем узлам сети. Другие узлы рабочих станций являются резервными диспетчерами. Периодически они генерируют широковещательные фреймы, называемые фреймами наличия резервных диспетчеров, подтверждающие работоспособность узлов и их способность заменить активный диспетчер в случае его отказа.

Широковещательный фрейм формируется на Канальном уровне модели OSI, и его поле назначения заполняется двоичными единицами. Широковещательный пакет формируется на Сетевом уровне модели OSI в сетях, использующих протокол IP. Его адрес назначения равен 255.255.255.255. Помимо широковещательных, существуют однонаправленные пакеты, которые передаются только целевому узлу, для которого предназначен конкретный пакет. Кроме того, бывают многоабонентские пакеты, которые отправитель рассылает нескольким целевым узлам, при этом каждый из этих узлов получает копию пакета.

Если широковещательные посылки от активного или резервных диспетчеров отсутствуют, кольцо переходит в состояние "испускания маяка". Это состояние начинается с того момента, когда некоторый узел генерирует так называемый фрейм маяка, указывающий на обнаружение некоторой ошибки. Кольцо пытается автоматически устранить ошибку, например, назначая новый активный диспетчер в том случае, если исходный диспетчер вышел из строя. После перехода в состояние испускания маяка передача маркеров с данными прекращается до момента ликвидации проблемы.

Маркерные кольца являются весьма надежной топологией и поэтому они иногда используются в особо важных конфигурациях. Одним из преимуществ маркерного кольца по сравнению с сетями Ethernet является то, что в них редко возникают "широковещательный шторм" или конфликты между рабочими станциями. Широковещательный шторм иногда случается в сетях Ethernet, когда большое количество компьютеров или устройств одновременно пытаются передавать данные или же когда компьютеры или устройства "зацикливаются" на передаче. Также в сетях Ethernet возникают сетевые конфликты, когда неисправный сетевой адаптер продолжает передачу широко-вещательных пакетов, несмотря на занятость сети. Такие проблемы редко встречаются в маркерных сетях, поскольку в каждый момент времени только один узел может передавать данные.



gastroguru © 2017