Формат сжатия h 264 что. Стандарт сжатия видеоизображения H.264. В темное время суток

Всё более популярным становится формат компрессии видеосигнала H.264. Подробную информацию о преимуществах, которые даёт его использование, вы сможете найти в статье, приведенной ниже. Напомним, что формат сжатия видео H.264 явился совместной разработкой двух международных организаций по стандартизации и ISO/IEC; этот формат также известен под названием MPEG-4 Part 10 AVC (Advanced Video Coding, продвинутая кодировка видеосигнала).

Сжимать еще сильнее

Аппетиты видеонаблюдения в отношении объемов хранения данных и пропускной способности сетей растут: никто не хочет упустить возможность воспользоваться большой частотой кадров и высоким разрешением. Отсюда и ожидания большей эффективности от методов сжатия видеосигнала. Кодер формата H.264 способен уменьшить размер файла, содержащего цифровое видео, более чем на 80% по сравнению с сигналом, сжатым по алгоритму формата Motion JPEG, при аналогичных показателях визуального качества. В сравнении с наиболее "ходовой" разновидностью формата MPEG-4 -- MPEG-4 Part 2 Simple Profile (SP) -- кодек H.264 обычно выигрывает 40-50 процентов от объема видеофайлов.

Сектор мегапиксельных камер растет, и до недавнего времени основным сдерживающим его рост фактором считались повышенные требования к объемам хранения данных, генерируемых камерами высокого разрешения. Использование кодека H.264 способно значительно ускорить процесс внедрения мегапиксельных камер.

По моему личному мнению (то есть мнению Джона Блема - прим. ред.) , формат H.264 почти окончательно вытеснит MPEG-4 (Part 2) в течение буквально нескольких лет. А поставщики решений управления видеонаблюдением примутся встраивать поддержку нового формата уже в ближайшем будущем, равно как и все ведущие производители видеокамер.

Ложка дегтя

Есть, однако, и факторы, сдерживающие восторг от новинки -- ведь, по сути, разработка находится еще в самом начале пути. Да, кодек позволяет снизить нагрузку на сети передачи данных и сэкономить на приобретении средств хранения видеоинформации. Но его использование возможно только в условиях применения высокопроизводительных камер. Новый алгоритм сжатия использует значительно более сложную математику, чем предыдущие стандарты -- скажем, процедура декодирования примерно вдвое превосходит аналогичную процедуру у MPEG-4 Part 2 SP по объемам вычислений -- соответственно этому растет и запрос к вычислительной мощности систем. При этом собственно стандартом H.264 стал относительно давно -- около пяти лет назад, и в некоторых отраслях -- исключая нашу с вами -- уже взят на вооружение. Скажем, он используется в новом поколении потребительских DVD-дисков высокого разрешения (формат Blu-ray).

Как это работает

H.264 является гибридным стандартом блочного кодирования видеоданных с использованием компенсации движения. Собственно компенсация основана на использовании векторов перемещения областей кадра для предсказания изменений в изображении. Поскольку для видеоизображений характерна высокая степень корреляции между двумя последовательными кадрами, возможно использовать это для кодирования не картинки целиком, а лишь векторов перемещения различных частей изображения; кодируется при этом предсказанная разница между текущим кадром и его областями, присутствующими на других кадрах (так называемых ссылочных) в смещенном относительно оригинального положения виде. Эта техника называется "промежуточное предсказание".

Существует два основных метода промежуточного предсказания -- основанное на одном ссылочном кадре (макроблоки типа P) и двунаправленное (макроблоки типа В), где используется комбинация двух ссылочных кадров. Чтобы обеспечить доступ к произвольным участкам видеоизображения и повысить степень защищенности от ошибок, стандартом также предусмотрено так называемое инфракодирование, при котором кодированные данные не зависят от характера и содержания каких-либо сторонних изображений, как это происходит в случае применения промежуточного предсказания.

Стандартом H.264 предусматривается разбиение изображения на макроблоки размером до 16х16 пикселов каждый. Макроблоки объединяются в группы -- одну или несколько -- обычно в порядке сканирования. Таким образом, отдельное изображение может быть закодировано как одна или несколько групп. Использование группирования макроблоков позволяет применять различные методы коррекции ошибок, различные типы кодирования макроблоков, а также такие инструменты, как раздельное кодирование полукадров (на правах групп) при чересстрочной развертке.

В цветных видеоизображениях кодирование яркостной составляющей происходит отдельно от цветовой; учитывая особенности человеческого зрения, при этом, как правило, используется поддискретизация цветового сигнала относительно яркостного. По большому счету, фундаментальных отличий нового формата от предыдущих стандартов кодирования видеосигнала (включая MPEG-4 Part 2) нет: все они так или иначе основаны на разбиении на блоки и являются гибридными.

Новые средства

Помимо улучшений, которым подверглись уже существующие средства кодирования, формат H.264 предусматривает и ряд новых инструментов. Наиболее важными из них являются встроенный адаптивный деблокирующий фильтр, позволяющий существенно снизить блокинг-искажения изображения, запись более чем двух ссылочных кадров для более точного предсказания, деление макроблоков на блоки меньшего размера (вплоть до 4х4 пиксела), предсказание в инфракодировании, а также применение целочисленного преобразования взамен применявшегося в более ранних стандартах дискретного косинусного преобразования (DCT).

В формат H.264 входит принципиальное решение сетевого интерфейса передачи видеоданных (network abstraction layer, NAL), который, будучи установлен поверх программного механизма кодирования видеосигнала (video coding layer, VCL), берет на себя функцию эффективного представления цифрового видео в формате, обеспечивающем легкую интеграцию с целым набором различных протоколов и механизмов передачи данных -- это весьма привлекательно для сетей, работающих на основе Интернет-протокола (IP).

Что в итоге?

Главный результат всех усовершенствований технологии кодирования, воплощенных в стандарте H.264, состоит в том, что новый формат действительно превосходит по своим характеристикам все предыдущие алгоритмы сжатия цифрового видеосигнала -- и потому на сегодняшний день может считаться высшим достижением в области кодирования цифрового видео.

Итак, стОит ли Н.264 всей медиа-шумихи, развернутой вокруг него? Стандарты видеокомпрессии с приходом нового формата стали стремительно меняться -- и сегодня они уже способны сохранить либо даже снизить нагрузку на пропускную способность сетей передачи данных при переходе на видео высокого разрешения. И это является весьма ценным.

Однако же, будем помнить, что все прелести новой технологии кодирования и хлынувших на рынок все более мощных мегапиксельных камер могут быть реализованы лишь при использовании крепкой управляющей платформы, на базе которой формируются решения видеонаблюдения. Применение стопроцентно открытых платформ по управлению IP-видеонаблюдением позволит вам интегрировать новые технологические решения в уже существующую у вас серверную инфраструктуру -- без необходимости полной замены аппаратной части системы.

Джон Блем, директор компании Milestone по информационным технологиям.

Добавлено: 2017-08-31 12:11:30

На сегодняшний день все современные системы видеонаблюдения так или иначе являются цифровыми, то есть в конечном виде информация всегда имеет цифровое представление. В связи с этим для более эффективного хранения и передачи по сети обязательно используется сжатие видео по определённым алгоритмам.

Основные понятия

Практически все знают, что видео представляет из себя последовательность статичных изображений, меняющихся во времени. А эти изображения состоят из массива пикселей.

Пиксель - это наименьший логический элемент изображения, который меняет свой цвет в зависимости от его содержания.

Кадр - это массив всех пикселей, которые генерируются видеокамерой в определённый момент времени. На данный момент в системах видеонаблюдения самые распространённые размеры кадров: 960x576 (WD1), 1280x720 (HD), 1920x1080 (FullHD), 2688x1520 (4Mpix) и 2560x1920 (5 Mpix).

Частота кадров – это скорость, с которой чередуются кадры на мониторе. В большинстве случаев частота 25 кадров в секунду является максимальной. На профессиональном жаргоне оборудование, способное записывать и генерировать видеопоток с частотой 25 к/с, имеет приставку RealTime (с англ. «реальное время»). При такой частоте человеческий глаз воспринимает динамическое изображение плавным и без дёрганий как в реальности.

Битрейт - это количество бит информации, используемое для хранения или передачи видео или аудио контента в единицу времени (бит/с). Битрейт также отображает степень сжатия потока данных. В системах видеонаблюдения битрейт может постоянным (СBR – Constant Bitrate) или переменным (Variable Bitrate). Постоянный битрейт соответствует заданным параметрам и остаётся неизменным на протяжении всего файла. Его главное достоинство в том, что можно предсказать размер конечного файла. При переменном битрейте кодек выбирает его значение, исходя из параметров желаемого качества. В течение всего кодируемого видеофрагмента битрейт может изменяться.

Опорные кадры (i - кадры) – кадры, которые содержат полную информацию о текущем снимке.

Предсказанные кадры (p - кадры) – кадры, содержащие информацию только о разнице между текущим и предыдущим снимком.

Все применяемые в системах видеонаблюдения алгоритмы сжатия основываются на технологиях с потерями. То есть в процессе сжатия отсекается часть избыточной информации.

Почему видео необходимо сжимать?

Для наглядности рассчитаем видеопоток без компрессии с FullHD камеры со скоростью 25 кадров в секунду. Итак, имеем кадр с разрешением 1920x1080 и суммарным количеством пикселей 2073600. Представим один пиксель в самой простой форме кодирования цвета - RGB24, где под составляющие Red, Green и Blue выделяется по 8 бит. То есть 1 пиксель будет занимать 24 бита информационного пространства. Следовательно, одному кадру c разрешением 1080p потребуется 49766400 бит или 47,5 Мбит. Таких кадров в секунду хотелось бы иметь 25. Отсюда «вытекает» битрейт без сжатия 47,5 x 25 = 1187.5 Мбит/с = 1,16 Гбит/с, то есть для хранения часового фрагмента видео с 2 Mpix IP видеокамеры потребуется 500 Гб дискового пространства, а для передачи потока пропускной способности гигабитной сети будет недостаточно.

Следует отметить, что обычно максимальный битрейт видеопотока c идентичными параметрами при сжатии кодеком H.264 обычно составляет 8 Мбит/с, что почти в 150 раз меньше, чем у несжатого видео. Из этого очевидно, что без алгоритмов сжатия системы видеонаблюдения стоили бы в десятки, а то и в сотни раз дороже того, что мы имеем сейчас.

Современные алгоритмы сжатия

Время не стоит на месте, требования к качеству картинки постоянно растут. При этом пропускная способность каналов связи и ёмкость накопителей совсем бы не поспевали за этим ростом, если бы не постоянное совершенствование алгоритмов сжатия.

Стандарт H.264

На данный момент в системах видеонаблюдения уже достаточно длительное время доминирует алгоритм сжатия H.264.

Компрессия H.264 заключается в исключении избыточных данных и сокращении их объема по многочисленным алгоритмам, подробно которые рассматривать в данной статье мы не будем.

При настройке кодирования в системах видеонаблюдения встречаются три основных профиля кодека H.264:

Baseline профиль подразумевает минимальную нагрузку на процессор декодирующего устройства при несильном сжатии. Предназначен для просмотра видеокамеры в локальной сети на компьютере.

Main профиль создаёт среднюю нагрузку на процессор при сильном сжатии. Этот профиль универсальный и подходит для производительных ПК и для большинства видеорегистраторов.

High профиль обеспечивает максимальное сжатие с сильной нагрузкой на устройство декодирования. Битрейт при работе с таким профилем будет в 2-3 раза ниже, чем при использовании baseline профиля. При использовании видеосервера на базе процессоров Intel или AMD, в отличие от видеорегистратора, нагрузка будет распределяться на работу всей системы.

Перспективный стандарт H.265

Формат сжатия H.265 High Efficiency Video Coding (HEVC) стал значительным шагом вперед в области кодирования цифрового видеосигнала, главным преимуществом которого является почти в 2 раза увеличенная эффективность по сравнению с предшествующим стандартом H.264. То есть благодаря новому алгоритму для передачи сигнала требуется вдвое меньшая пропускная способность сети, а для хранения вдвое меньшая ёмкость накопителей. Это позволяет использовать программные и аппаратные средства c гораздо меньшими затратами.

Кстати, новый стандарт поддерживает разрешения вплоть до 35 Mpix (8192 х 4320 (8K)), так как максимальный размер блока увеличен до 4096 пикселей (у H.264 – блок 256 пикселей).

Параллельное кодирование, предусмотренное стандартом H.265, даёт возможность одновременной обработки разных частей кадра, что существенно ускоряет воспроизведение и даёт возможность в полной мере использовать современные многоядерные процессоры.

Кроме этого, новый стандарт получил технологию произвольного доступа к изображению (Clean Random Access), которая позволяет произвести декодирование случайно выбранного кадра без необходимости обработки предыдущих в потоке изображений. Это особенно желательно, когда при мониторинге требуется оперативно переключиться на определённый канал.

Несмотря на все преимущества, H.265 ещё далёк от повсеместного использования. Во-первых, из-за того, что для его использования необходима обновлённая аппаратная часть, во-вторых, чтобы использовать кодек необходима покупка патента, а в-третьих, имеются некоторые расхождения между эффективностями, полученными в лабораторных и реальных условиях.

Вероятнее всего в долгосрочной перспективе H.265 всё-таки заменит H.264 в качестве главного решения для компрессии видео.

Оптимизированный формат H.264+

Алгоритм сжатия H.264+ - инновационный формат, разработанный специально для использования в системах видеонаблюдения. По сути H.264+ это модифицированный кодек H.264 (AVC), который оптимизирован под задачи видеонаблюдения с учётом всех особенностей.

На видео, полученном с охранных видеокамер, сцена всегда постоянна и практически не изменяется, представляющие интерес подвижные объекты могут отсутствовать на протяжении длительного времени, а шумы, возникающие в плохих условиях освещения, ощутимо влияют на качество изображения. В обновлённом формате все эти особенности были учтены и обрабатываются следующими технологиями, повышающими степень сжатия:

  • кодирование с предсказанием на основе модели фона;
  • шумоподавление;
  • долгосрочное управление видеопотоком.

Кодирование с предсказанием. Все современные алгоритмы сжатия сочетают внутрикадровое и межкадровое сжатие. При внутрикадровом сжатии опорные i-кадры кодируются независимо от других кадров, а предсказанные p-кадры используют i-кадры и другие p-кадры (межкадровое сжатие). При межкадровом сжатии эффективность сильно зависит от выбора опорного кадра. Так как фон в видеонаблюдении стабилен, то его лучше всего использовать в качестве опорного i-кадра, тем самым повысить эффективность сжатия неподвижных объектов и снизить поток данных, приходящийся на опорные кадры. Интеллектуальный алгоритм предсказания выбирает опорные кадры среди тех, в которых меньше всего движущихся объектов.

Шумоподавление. Обычно подвижные объекты кодируются вместе со статичным фоном для сохранения качества. Вместе с фоном кодируются и фоновые шумы. В формате H.264+ c помощью специальных алгоритмов фон отделяется от движущегося объекта и кодируется с более высокой степенью сжатия. Такая технология позволяет частично подавлять шумы и уменьшать битрейт.

Долгосрочное управление видеопотоком. При фоновом подавлении шума битрейт видео зависит от размера части фона изображения. Например, при съёмке на улице в дневное время на фон приходится очень малая часть изображения, так как в это время в кадре находится большое количество подвижных людей и автомобилей. При этом битрейт ощутимо возрастает. И наоборот, ночью битрейт уменьшается, так как движущихся объектов становится гораздо меньше. Формат H.264+ имеет алгоритмы отслеживания интенсивности видеопотоков и в зависимости от времени суток автоматически изменяет степень сжатия. Такая технология управления видеопотоком позволяет не только уменьшить объём видеоархива, но и сохранить качество изображения движущихся объектов.

Недостатки сжатия видео

При использовании алгоритмов сжатия иногда на изображении можно отчётливо наблюдать так называемые артефакты. Например, разбиение изображения на блоки 8x8 пикселей или потерю мелких деталей изображения (размытие).

Заключение

Алгоритм сжатия H.264 по-прежнему остается самым популярным стандартом для подавляющего большинства систем видеонаблюдения. На сегодняшний день он полностью выполняет свои функции. Инновационный формат H.265 пока широкого распространения не получил в силу некоторых особенностей, но имеет все шансы заменить своего предшественника. Оптимизированный алгоритм H.264+ также глобального применения не имеет, так как используется только несколькими производителями.


В ближайшее время хочу выложить заметку про HD плеер WD TV Live, поэтому коснусь больной для железных плееров темы – почему возникают проблемы с проигрыванием видео. Зачастую причина в в неоправданно навороченном H.264 потоке. Стандарт H.264 предусматривает множество механизмов компрессии сигнала, вот таблица , в которой каждому профилю ставится в соответствие набор возможностей, которые могут быть задействованы в потоке. Профили бывают например такие - Constrained Baseline Profile (CBP), Baseline Profile (BP), Main Profile (MP), High Profile (HiP) и др. Еще есть понятие уровня , который определяет численные ограничения в рамках конкретного профиля. Уровни обозначаются парой чисел от 1.0 до 5.1. Профиль принято записывать в виде @L, например можно встретить такие обозначения – [email protected] или [email protected].

За эталон качества принято считать поток с Blu-Ray диска, его видеопоток соответствует профилю [email protected]. По данным таблицы [email protected] накладывает максимальное ограничение на поток – 62500 Kbps и обеспечивает следующие режимы (привожу самые высокие): 1,280×[email protected] (9), 1,920×1,[email protected] (4), 2,048×1,[email protected] (4). Число после @ – это частота кадров, а число в скобках – количество reference frames (или reframes). Reframes – это количество кадров на которые может ссылаться текущий в процессе декодирования. Этот параметр накладывает требования на объем памяти декодера и возможно его увеличение еще влечет некоторую дополнительную нагрузку на декодер. Так вот для Blu-Ray в full hd разрешении этот параметр равен всего лишь 4-ем. На тех blu-ray, что были под рукой проверил – это действительно так, как и соответствие данному профилю. Однако видео скачанное из сети нередко имеет выставленные более высокие профили, а количество reframes иногда достигает 19! Посмотреть свойства потока можно бесплатной утилитой . Я проделал это и обнаружил что порядка 20% имеющихся фильмов имеет завышенные reframes и завышенные профили. В этом подмножестве достаточно типичен профиль [email protected]. Для информации приведу его характеристики: поток до 300000 Kbps (!), максимальные режимы: 1,920×1,[email protected] (16), 4,096×2,[email protected] (5), 4,096×2,[email protected] (5). Такой безумный битрейт физически не поддерживается blu-ray диском (максимальный битрейт – 48 Mbit) и он не пролезает через 100 Mbps сетку, судя по максимальным разрешениям профиль предназначен для кодирования видео для цифровых кинотеатров. Почему так происходит понятно – люди просто выставляют все на максимум и сжимают, совершенно не включая голову, а в итоге имеем проблемы, с которыми к счастью героически борются создатели HD плееров, но с переменным успехом. Скоро напишу о том, как получается у них бороться.

16.12.2015

Алгоритм сжатия H.264+ – инновационная разработка компании Hikvision. По своей сути H.264+ представляет собой кодек H.264/AVC, модифицированный под задачи видеонаблюдения и с учетом его специфики, чтобы повысить степень сжатия без ущерба для качества видео.

Специфика видеонаблюдения заключается в следующем:

    фон стабилен и практически не изменяется;

    движущиеся объекты появляются редко и могут отсутствовать в течение продолжительного времени;

    интерес представляют только движущиеся объекты;

    наблюдение ведется круглосуточно, а шумы заметно влияют на качество изображения.

H.264+ повышает степень сжатия за счет 3 ключевых факторов:

    кодирование с предсказанием на основе модели фона,

    фоновое шумоподавление,

    долгосрочное управление видеопотоком.

Кодирование с предсказанием

Все современные алгоритмы сжатия, такие как MPEG2, MPEG4, H.264/AVC и самый современный алгоритм HEVC, сочетают внутрикадровое и межкадровое сжатие. I-кадры (опорные кадры) кодируются независимо от других кадров, то есть используется внутрикадровое сжатие, тогда как для кодирования P-кадров (предсказанные кадры) используются I-кадры и другие P-кадры (межкадровое сжатие). В случае межкадрового сжатия эффективность будет сильно зависеть от выбора опорного кадра.

В области видеонаблюдения фон, как правило, стабилен. Его можно извлечь и использовать в качестве опорного кадра.

Рис. 1. Модель фона

На Рис. 1 показана последовательность из 3 кадров, где кадры T0 и T1 уже подверглись обработке кодеком. Здесь можно взять фон в качестве опорного кадра и сжать кадр T2 на основе с учетом сходства и разницы между кадром T1 и фоном. Кадр T0 будет хорошим выбором в качестве фонового изображения.

Для примера возьмем Рис. 2, на котором автомобиль перемещается из области B в A (из кадра T1 в кадр T2). При кодировании кадра T2 область B становится вновь открывшимся участком.


Рис. 2. Объект перемещается из B в A

Если в качестве опорного кадра выбран T1, то никакой оптимизации не получится для области B и информацию о ней придется передавать заново. Поскольку кодируется именно разница между новым и опорным кадром.


Рис.3. Традиционная схема кодирования с опорным кадром

Но если мы возьмем в качестве опорного кадра T0, в большинстве случаев мы получим оптимизированный блок для области B. Тем не менее, если мы сохраним информацию о фоне и возьмем в качестве опорного кадра T1, мы найдем идеальные блоки для кодирования кадра T2, что гарантирует высокое качество изображения и уменьшенный размер видеопотока.


Рис. 4. Схема кодирования с фоном в качестве опорного кадра

Если брать фон в качестве опорного кадра, то можно не только повысить эффективность сжатия неподвижных объектов, но и уменьшить поток данных, который приходится на опорные кадры.

Опорные кадры обновляются каждые несколько секунд при кодировании видеопотока для задач видеонаблюдения. В результате на опорные кадры приходится значительная часть данных в видеопотоке, что особенно заметно в тех случаях, когда в кадре много мелких деталей и мало движения. Иногда на опорные кадры приходится до 50% данных видеопотока. Более того, при стабильном фоне эти данные носят повторяющийся характер.

Для того чтобы уменьшить удельный вес этих повторов в видеопотоке, в кодеке H.264+ используется метод работы с опорными кадрами на основе модели фона, показанный на Рис. 5.


Рис. 5. Работа с опорными кадрами на основе модели фона в H.264+

На Рис. 5. красным цветом показаны опорные кадры фона, в которых используется внутрикадровое сжатие. Синим цветом здесь отмечены кадры обновления, в которых применяется внутрикадровое сжатие для участков с движущимися объектами, обведенными красной рамкой на Рис. 6., и межкадровое сжатие – для неподвижных объектов. Белым цветом показаны обычные кадры с межкадровым сжатием.

Интеллектуальный алгоритм выбирает опорный кадр среди тех кадров, где меньше всего движущихся объектов. Опорные кадры, которые используют модель фона, содержат примерно такой же объем данных, что и обычные опорные кадры в традиционной схеме кодирования, но интервал между ними заметно больше. Кроме того, объем данных, который содержится в кадрах обновления, значительно меньше, чем в опорных кадрах при традиционной схеме кодирования, а интервал между кадрами обновления такой же, то есть фактически кадры обновления заменяют собой опорные.


Рис. 6. Кодирование кадров обновления в H.264+

Шумоподавление

Принимая во внимание тот факт, что фон в видеонаблюдении достаточно стабилен, с помощью интеллектуальных алгоритмов можно отделить его от движущихся объектов. Обычно для сохранения качества движущиеся объекты кодируются вместе с фоновым шумом. Тем не менее, интеллектуальные алгоритмы позволяют применить различные стратегии кодирования для фона и для движущихся объектов.

Участки фона кодируются с более высокой степень сжатия, чтобы уменьшить размер видеопотока, а это также частично подавляет шум. В то же время движущиеся объекты кодируются с меньшей степенью сжатия.


Рис.7. Шумоподавление в H.264+

Долгосрочное управление видеопотоком

При эффективном подавлении шума на фоне размер видеопотока зависит от ого, какая часть изображения приходится на этот фон. Например, для уличного наблюдения на фон придется довольно малая часть изображения, так как в дневное время одновременно движется большое количество пешеходов и машин. В этом случае размер видеопотока заметно возрастает. И наоборот, в ночное время, когда мало машин и пешеходов, площадь фона на изображении возрастает, а размер видеопотока, соответственно, уменьшается.


Рис. 8. Колебания видеопотока в зависимости от времени суток

Управление размером видеопотока для перераспределения его в зависимости от времени суток не только сохраняет высокое качество изображения движущихся объектов, но также позволяет уменьшить размер видеоархива.

Для более полной реализации такой экономии Hikvision предлагает новую концепцию управления видеопотоком, которая подразумевает долгосрочное отслеживание его флуктаций, как правило в течение 24 часов. В дальнейшем H.264+ автоматически подстраивает размер видеопотока в зависимости от времени суток, изменяя степень сжатия, но среднесуточный размер видеопотока остается неизменным в пределах выбранного значения.


Рис. 9. Долгосрочное управление видеопотоком с его перераспределением

На Рис. 9 видно, что в период времени C (активность возрастает и требуется больший размер видеопотока для получения качественного изображения) выделяется дополнительная квота за счет периодов времени A и B (активность низка и размер видеопотока снижается).

Уменьшение размера видеопотока

Для включения сжатия H.264+, необходимо чтобы размер видеопотока был переменным, при этом включается долгосрочное управление видеопотоком. Средний размер видеопотока вычисляется автоматически на основе пиковых значений. В большинстве случаев автоматически определенное значение среднего размера видеопотока не требует дополнительной подстройки. Тем не менее, иногда это может потребоваться, например, если в кадре слишком много или слишком мало движения. На Рис. 10 приведены примеры ситуаций, когда кодек Hikvision H.264+ может существенно уменьшить размер видеопотока. Эта экономия будет зависеть от размера фона и количества движения в кадре.


Внутри помещений

Активность

Экономия видеопотока


На улице

Активность

Экономия видеопотока

В темное время суток

Активность

Экономия видеопотока

Рис. 10. Экономия видеопотока в зависимости от наблюдаемой сцены

Применение

Кодек H.264+ применяется в IP-видеокамерах высокого разрешения. При сохранении качества, сопоставимого с кодеком H.264/AVC, размер видеопотока у H.264+ уменьшается. Например, при малой активности в кадре такая экономия может достигать 75%, а при наличии большого количества движущихся объектов экономия составит 50%. Впрочем, если в кадре присутствует постоянное движение, размер видеопотока у H.264+ и H.264/AVC будет сопоставимым.

Более того, пиковые значения размера видеопотока у H.264+ будут превышать среднее выбранное значение, чтобы сохранить высокое качество изображения у движущихся объектов. Чем больше таких объектов, тем больше размер видеопотока H.264+, но он никогда не превысит аналогичного значения у H.264/AVC.

Кодек H.264+ соответствует стандарту H.264/AVC и совместим практически со всем программным и аппаратным обеспечением, которое поддерживает этот стандарт. В некоторых случаях может потребоваться лишь незначительная подстройка, чтобы улучшить воспроизведение.

Оценить возможности кодека H.264+ в сравнении с H.264/AVC и его эффективность в различных условиях вы можете, посмотрев следующий видеоролик, который подготовила для вас компания Hikvision.

27.03.2009

В наш век маркетинга и сквозной девальвации оценочных категорий сложно верить чему-либо на слово. Лишь пахнёт серьезными деньгами -- появляются купленные мнения авторитетных персон, подделываются результаты исследований, порхают с железки на железку шильдики с именами вековых брендов. Ужас в том, что, строго говоря, нельзя верить и прессе. Ну, если нельзя, но очень хочется, то -- можно...

Наблюдая за последними тенденциями в области сжатия цифрового видео, редакция Security News старается обращать внимание не только на позитивные оценки мировых отраслевых экспертов, но и на скептические нотки. Если повезет, попадается и жесткая критика. Два экспертных мнения, которые мы публикуем, относятся скорее к позитиву, хотя, по некоторым признакам, они лишь закамуфлированы под "объективные". Приглашаем к дискуссии отечественных специалистов: в российской отраслевой прессе еще несколько лет назад все прогнозы сходились на Wavelet-кодировании. Почему "победило" другое решение, по техническим мотивам или в погоне за прибылью? И победило ли вообще? Ждем ваших мнений.

Не так давно мне довелось присутствовать на двух выставках -- ISC West в Лас-Вегасе и IFSEC в Соединенном Королевстве. Сильная сторона этих мероприятий -- в том, что по ним можно безошибочно определить, куда дует рыночный ветер и чем заняты умы коллег по отрасли. Будучи техническим руководителем компании, производящей управляющее ПО для систем IP-видеонаблюдения, я был весьма заинтересован в том, чтобы отделить зерна от плевел.

Поскольку участвовать в обеих выставках приходилось и раньше, я прекрасно понимал, что прессу здесь будет интересовать только "самое последнее и самое крутое". Зацепившись за какую-нибудь тему, СМИ словно стартуют забег -- кто эффектнее подаст самое последнее из распоследних и величайшее из великих. Однако не будем забывать и о том, что еще пару лет назад такой "горячей" темой было IP-видеонаблюдение -- а сегодня оно уже становится фактическим стандартом, значительно опередив в развитии аналоговые технологии.

В этом году предметом горячих обсуждений стал новый формат сжатия видеосигнала H.264. Напомню, что он явился совместной разработкой двух международных организаций по стандартизации -- и ISO/IEC; этот формат также известен под названием MPEG-4 Part 10 AVC (Advanced Video Coding, продвинутая кодировка видеосигнала).

Сжимать еще сильнее

Аппетиты видеонаблюдения в отношении объемов хранения данных и пропускной способности сетей растут: никто не хочет упустить возможность воспользоваться большой частотой кадров и высоким разрешением. Отсюда и ожидания большей эффективности от методов сжатия видеосигнала. Кодер формата H.264 способен уменьшить размер файла, содержащего цифровое видео, более чем на 80% по сравнению с сигналом, сжатым по алгоритму формата Motion JPEG, при аналогичных показателях визуального качества. В сравнении с наиболее "ходовой" разновидностью формата MPEG-4 -- MPEG-4 Part 2 Simple Profile (SP) -- кодек H.264 обычно выигрывает 40-50 процентов от объема видеофайлов.

Сектор мегапиксельных камер растет, и до недавнего времени основным сдерживающим его рост фактором считались повышенные требования к объемам хранения данных, генерируемых камерами высокого разрешения. Использование кодека H.264 способно значительно ускорить процесс внедрения мегапиксельных камер.

По моему личному мнению, формат H.264 почти окончательно вытеснит MPEG-4 (Part 2) в течение буквально нескольких лет. А поставщики решений управления видеонаблюдением примутся встраивать поддержку нового формата уже в ближайшем будущем, равно как и все ведущие производители видеокамер.

Ложка дегтя

Есть, однако, и факторы, сдерживающие восторг от новинки -- ведь, по сути, разработка находится еще в самом начале пути. Да, кодек позволяет снизить нагрузку на сети передачи данных и сэкономить на приобретении средств хранения видеоинформации. Но его использование возможно только в условиях применения высокопроизводительных камер. Новый алгоритм сжатия использует значительно более сложную математику, чем предыдущие стандарты -- скажем, процедура декодирования примерно вдвое превосходит аналогичную процедуру у MPEG-4 Part 2 SP по объемам вычислений -- соответственно этому растет и запрос к вычислительной мощности систем. При этом собственно стандартом H.264 стал относительно давно -- около пяти лет назад, и в некоторых отраслях -- исключая нашу с вами -- уже взят на вооружение. Скажем, он используется в новом поколении потребительских DVD-дисков высокого разрешения (формат Blu-ray).

Как это работает

H.264 является гибридным стандартом блочного кодирования видеоданных с использованием компенсации движения. Собственно компенсация основана на использовании векторов перемещения областей кадра для предсказания изменений в изображении. Поскольку для видеоизображений характерна высокая степень корреляции между двумя последовательными кадрами, возможно использовать это для кодирования не картинки целиком, а лишь векторов перемещения различных частей изображения; кодируется при этом предсказанная разница между текущим кадром и его областями, присутствующими на других кадрах (так называемых ссылочных) в смещенном относительно оригинального положения виде. Эта техника называется "промежуточное предсказание".

Существует два основных метода промежуточного предсказания -- основанное на одном ссылочном кадре (макроблоки типа P) и двунаправленное (макроблоки типа В), где используется комбинация двух ссылочных кадров. Чтобы обеспечить доступ к произвольным участкам видеоизображения и повысить степень защищенности от ошибок, стандартом также предусмотрено так называемое инфракодирование, при котором кодированные данные не зависят от характера и содержания каких-либо сторонних изображений, как это происходит в случае применения промежуточного предсказания.

Стандартом H.264 предусматривается разбиение изображения на макроблоки размером до 16х16 пикселов каждый. Макроблоки объединяются в группы -- одну или несколько -- обычно в порядке сканирования. Таким образом, отдельное изображение может быть закодировано как одна или несколько групп. Использование группирования макроблоков позволяет применять различные методы коррекции ошибок, различные типы кодирования макроблоков, а также такие инструменты, как раздельное кодирование полукадров (на правах групп) при чересстрочной развертке.

В цветных видеоизображениях кодирование яркостной составляющей происходит отдельно от цветовой; учитывая особенности человеческого зрения, при этом, как правило, используется поддискретизация цветового сигнала относительно яркостного. По большому счету, фундаментальных отличий нового формата от предыдущих стандартов кодирования видеосигнала (включая MPEG-4 Part 2) нет: все они так или иначе основаны на разбиении на блоки и являются гибридными.

Новые средства

Помимо улучшений, которым подверглись уже существующие средства кодирования, формат H.264 предусматривает и ряд новых инструментов. Наиболее важными из них являются встроенный адаптивный деблокирующий фильтр, позволяющий существенно снизить блокинг-искажения изображения, запись более чем двух ссылочных кадров для более точного предсказания, деление макроблоков на блоки меньшего размера (вплоть до 4х4 пиксела), предсказание в инфракодировании, а также применение целочисленного преобразования взамен применявшегося в более ранних стандартах дискретного косинусного преобразования (DCT).

В формат H.264 входит принципиальное решение сетевого интерфейса передачи видеоданных (network abstraction layer, NAL), который, будучи установлен поверх программного механизма кодирования видеосигнала (video coding layer, VCL), берет на себя функцию эффективного представления цифрового видео в формате, обеспечивающем легкую интеграцию с целым набором различных протоколов и механизмов передачи данных -- это весьма привлекательно для сетей, работающих на основе Интернет-протокола (IP).

Что в итоге?

Главный результат всех усовершенствований технологии кодирования, воплощенных в стандарте H.264, состоит в том, что новый формат действительно превосходит по своим характеристикам все предыдущие алгоритмы сжатия цифрового видеосигнала -- и потому на сегодняшний день может считаться высшим достижением в области кодирования цифрового видео.

Итак, стОит ли Н.264 всей медиа-шумихи, развернутой вокруг него? Стандарты видеокомпрессии с приходом нового формата стали стремительно меняться -- и сегодня они уже способны сохранить либо даже снизить нагрузку на пропускную способность сетей передачи данных при переходе на видео высокого разрешения. И это является весьма ценным.

Однако же, будем помнить, что все прелести новой технологии кодирования и хлынувших на рынок все более мощных мегапиксельных камер могут быть реализованы лишь при использовании крепкой управляющей платформы, на базе которой формируются решения видеонаблюдения. Применение стопроцентно открытых платформ по управлению IP-видеонаблюдением позволит вам интегрировать новые технологические решения в уже существующую у вас серверную инфраструктуру -- без необходимости полной замены аппаратной части системы.

Правда или маркетинг. Оправдает ли H.264 ожидания пользователей?

Том Гэлвин, директор консалтинговой компании NetVideo Consulting, в прошлом -- вице-президент компании GE Security по инженерным вопросам.
По материалам журнала Security Dealer and Integrator
.

Вот и взяла старт гонка по внедрению стандарта видеокомпрессии H.264. Производители принимают этот формат в качестве стандартного для своих цифровых видеорегистраторов, сетевых камер и кодеров, наперебой обещая снижение объемов видеоданных вплоть до 50 процентов по сравнению со сжатием MPEG-4. Пятидесятипроцентное снижение -- заявка серьезная, поскольку это может в огромной степени повлиять на показатели общей стоимости владения систем видеонаблюдения. Снижение битрейтов оборачивается наращиванием объемов хранения цифровых данных, снижением нагрузки на сетевую инфраструктуру либо повышением качества видеоизображения при тех же скоростях передачи цифровой информации.

Руководствуясь чисто профессиональным интересом, я решил ответить на вопрос: а дотягивает ли кодек до уровня, которым его наделили многочисленные обещания? А чтобы ответ не был голословным, подтвердить вывод непосредственным сравнением эффективности компрессии алгоритмов MPEG-4 и H.264. Самое интересное -- способен ли H.264 реально снизить битрейты без потери качества видеоизображения?

Стандарт H.264 обязан своим появлением двум разным группам экспертов, объединившимся специально в целях его создания. Появившийся в результате совместных трудов продукт получил известность под разными именами. "H.264" его окрестила организация ITU-T, осуществляющая координацию телекоммуникационных стандартов Международного Телекоммуникационного союза (International Telecommunication Union). Международная организация по стандартизации (International Organization for Standardization, ISO) называет тот же самый стандарт по-своему -- MPEG-4 Part 10/Advanced Video Coding (AVC), поскольку он является расширением пакета стандартов MPEG-4, уже успешно внедренного в обширный ряд продуктов, относящихся к видеонаблюдению. Охранная индустрия США приняла в качестве термина несколько менее аристократичное, но более короткое название -- "просто" H.264.

Новый стандарт определяет ряд математических принципов, применение которых при сжатии видеосигнала позволяет добиться более успешных результатов, чем это наблюдается в ранее принятых стандартах. Многие из описанных в нем алгоритмов весьма требовательны к вычислительной мощности оборудования либо неприменимы в ряде конкретных приложений. Чтобы обеспечить нужную гибкость в применении, стандарт определяет семь различных профилей. Под профилем понимается совокупность характеристик, обеспечиваемая для конкретной группы практических приложений стандарта. Многие из продуктов для видеонаблюдения, скорее всего, будут основаны на применении профиля "базовый" (baseline). Базовый профиль предназначается для аппаратных устройств, имеющих ограниченные вычислительные мощности, но требующих минимально возможной задержки сигнала по времени. Прочие профили предназначены для широкого спектра приложений -- от телевещания и DVD высокого разрешения (Blu-ray) до мобильной телефонии.

Чей пирог вкуснее?

Для "кулинарного конкурса" я использовал два кодера разных форматов -- H.264 и MPEG-4 -- производства компании Axis Communications, применив их к двум типичным для видеонаблюдения сценам. Первая сцена снималась на поворотную камеру, расположенную на автостоянке, а вторая -- на фиксированную камеру, закрепленную над дверью в фойе бизнес-центра. Обе сцены снимались в разрешении 4CIF с частотой 30 кадров в секунду. Для измерения битрейтов, поступающих с каждого из источников цифрового видеопотока, я пользовался программным обеспечением NetVideo Device Manager. С помощью довольно утомительной процедуры, основанной на методе проб и ошибок, я настроил степени компрессии таким образом, чтобы достичь визуально эквивалентного уровня качества видеоизображения, формируемого обоими источниками.

В обеих сценах у устройства, в котором применено сжатие по стандарту H.264, зафиксировано снижение средней плотности потока данных примерно на 50 процентов.

Измеренная задержка сигнала по времени для обоих устройств составила примерно 100 миллисекунд. В величину задержки входит время, затрачиваемое на оцифровку видеосигнала, сжатие потока данных и передачу его по сети, декодирование и вывод на экран персонального компьютера. Задержка в 100 миллисекунд -- значение весьма малое, и потому неспособное повлиять на эффективность управления поворотными устройствами камер.

Я повторил сравнительные испытания в различных сценах, и везде обнаружилась разница между отображенными сигналами, полученными с применением форматов компрессии MPEG-4 и H.264. Типичные артефакты, известные как блокинг-эффект, при относительно высоких степенях компрессии значительно заметнее на MPEG-4, чем на H.264.

По мере повышения степени сжатия сигнала видеопотоков, обрабатываемых кодерами MPEG-4 и H.264 (и соответствующего снижения битрейтов и визуального качества изображения) я отметил, что "блоки" на сигнале MPEG-4 становятся все более заметными, в то время как картинка, сжатая в формате H.264, продолжает оставаться "гладкой", избавляясь от артефактов за счет снижения детализации изображения.

То, как кодек H.264 "расправляется" с блокинг-артефактами, обусловлено такими свойствами формата, как возможность снижения размера блоков вплоть до 4х4 пиксела, а также применением деблокирующего фильтра, который сглаживает контрастные зоны между прилегающими блоками.

Деблокирование требует больших затрат вычислительных ресурсов, потому для его осуществления в кодерах видеоустройств должны применяться более мощные (и потому более дорогие!) процессоры.

Декодеры, способные расшифровать сигнал формата H.264, также должны обладать большей вычислительной мощностью. Участвовавший в нашем "конкурсе" программный декодер сигнала Н.264, реализованный на персональном компьютере, вдвое интенсивнее "грузил" центральный процессор, чем его коллега MPEG-4; это наблюдалось при съемке обеих тестовых сцен -- на парковке и в фойе. При использовании программных приложений, в которых предусмотрено одновременное отображение многочисленных сигналов с камер, это может существенно повлиять на требования к аппаратной части применяемых ПК.

Несмотря на то, что снижение битрейта при применении кодека H.264 происходит за счет повышения требований к вычислительным ресурсам, по моему убеждению, формат H.264 -- серьезный шаг в развитии систем видеонаблюдения. Эффективность внедрения стандарта H.264 может выражаться в увеличении глубины архивирования, снижении затрат на хранение видеоданных либо в улучшении качества изображения. Думаю, что формат H.264 получит повсеместное распространение в качестве стандарта компрессии видеоданных в охранной отрасли, значительно снизив эксплуатационные затраты в системах видеонаблюдения с повышенным разрешением и частотой кадров.



gastroguru © 2017