Компьютерный код 01. Бинарные коды. Знаковый обратный ключ

Двоичный код представляет собой форму записи информации в виде единиц и нулей. Такая является позиционной с основанием 2. На сегодняшний день двоичный код (таблица, представленная немного ниже, содержит некоторые примеры записи чисел) используется во всех без исключения цифровых устройствах. Его популярность объясняется высокой надежность и простотой данной формы записи. Двоичная арифметика весьма проста, соответственно, ее легко реализовать и на аппаратном уровне. компоненты (или как их еще называют - логические) весьма надежны, так как они оперируют в работе всего двумя состояниями: логической единицы (есть ток) и логического нуля (нет тока). Тем самым они выгодно отличаются от аналоговых компонентов, работа которых основана на переходных процессах.

Как составляется двоичная форма записи?

Давайте разберемся, каким образом формируется такой ключ. Один разряд двоичного кода может содержать всего два состояния: ноль и единицу (0 и 1). При использовании двух разрядов появляется возможность записать четыре значения: 00, 01, 10, 11. Трехразрядная запись содержит восемь состояний: 000, 001 … 110, 111. В результате получаем, что длина двоичного кода зависит от числа разрядов. Это выражение можно записать с помощью следующей формулы: N =2m, где: m - это количество разрядов, а N - число комбинаций.

Виды двоичных кодов

В микропроцессорах такие ключи применяются для записи разнообразной обрабатываемой информации. Разрядность двоичного кода может существенно превышать и его встроенной памяти. В таких случаях длинные числа занимают несколько ячеек запоминающего устройства и обрабатываются с помощью нескольких команд. При этом все сектора памяти, которые выделены под многобайтный двоичный код, рассматриваются в качестве одного числа.

В зависимости от необходимости предоставления той или иной информации, различают следующие виды ключей:

  • беззнаковые;
  • прямые целыезнаковые коды;
  • знаковые обратные;
  • знаковые дополнительные;
  • код Грея;
  • код Грея-Экспресс.;
  • дробные коды.

Рассмотрим более детально каждый из них.

Беззнаковый двоичный код

Давайте разберемся, что же представляет собой такой вид записи. В целых беззнаковых кодах каждый разряд (двоичный) представляет степень цифры два. При этом наименьшее число, которое можно записать в такой форме, равно нулю, а максимальное можно представить следующей формулой: М=2 п -1. Эти два числа полностью определяют диапазон ключа, которым можно выразить такой двоичный код. Давайте рассмотрим возможности упомянутой формы записи. При использовании данного вида беззнакового ключа, состоящего из восьми разрядов, диапазон возможных чисел составит от 0 до 255. Шестнадцатиразрядный код будет иметь диапазон от 0 до 65535. В восьмиразрядных процессорах для хранения и записи таких чисел используют два сектора памяти, которые располагаются в соседних адресатах. Работу с такими ключами обеспечивают специальные команды.

Прямые целые знаковые коды

В данном виде двоичных ключей старший разряд используется для записи знака числа. Нуль соответствует плюсу, а единица - минусу. В результате введения данного разряда диапазон закодированных чисел смещается в отрицательную сторону. Получается, что восьмиразрядный знаковый целый двоичный ключ может записать числа в диапазоне от -127 до +127. Шестнадцатиразрядный - в диапазоне от -32767 до +32767. В восьмиразрядных микропроцессорах для хранения подобных кодов используют два соседних сектора.

Недостатком такой формы записи является то, что знаковые и цифровые разряды ключа необходимо обрабатывать раздельно. Алгоритмы программ, работающих с этими кодами, получаются очень сложными. Для изменения и выделения знаковых разрядов необходимо применять механизмы маскировки этого символа, что способствует резкому увеличению размеров программного обеспечения и уменьшению его быстродействия. С целью устранения данного недостатка был введен новый вид ключа - обратный двоичный код.

Знаковый обратный ключ

Данная форма записи отличается от прямых кодов только тем, что отрицательное число в ней получается путем инвертирования всех разрядов ключа. При этом цифровые и знаковые разряды идентичны. Благодаря этому, алгоритмы работы с таким видом кодов существенно упрощаются. Однако обратный ключ требует специальный алгоритм для распознавания символа первого разряда, вычисления абсолютной величины числа. А также восстановления знака результирующего значения. Более того, в обратном и прямом кодах числа для записи нуля используют два ключа. Несмотря на то что это значение не имеет положительного или отрицательного знака.

Знаковый дополнительный код двоичного числа

Данный вид записи не имеет перечисленных недостатков предыдущих ключей. Такие коды позволяют проводить непосредственное суммирование как положительных, так и отрицательных чисел. При этом не проводится анализ знакового разряда. Все это стало возможным благодаря тому факту, что дополнительные числа представляют собой естественное кольцо символов, а не искусственные образования, такие как прямые и обратные ключи. Более того, важным фактором является, то что произвести вычисления дополнений в двоичных кодах чрезвычайно просто. Для этого достаточно к обратному ключу добавить единицу. При использовании данного вида знакового кода, состоящего из восьми разрядов, диапазон возможных чисел составит от -128 до +127. Шестнадцатиразрядный ключ будет иметь диапазон от -32768 до +32767. В восьмиразрядных процессорах для хранения таких чисел также используют два соседних сектора.

Двоичный дополнительный код интересен наблюдаемым эффектом, который называют явлением распространения знака. Давайте разберемся, что это значит. Данный эффект заключается в том, что в процессе преобразования однобайтового значения в двухбайтовое достаточно каждому биту старшего байта назначить значения знаковых битов младшего байта. Получается, что для хранения знакового можно воспользоваться старшими битами. При этом значение ключа совершенно не изменяется.

Код Грея

Данная форма записи, по сути, является одношаговым ключом. То есть в процессе перехода от одного значения к другому меняется всего лишь один бит информации. При этом погрешность при считывании данных приводит к переходу от одного положения к другому с незначительным смещением по времени. Однако получение совершенно неверного результата углового положения при таком процессе полностью исключается. Достоинством такого кода является его способность зеркально отображать информацию. Например, инвертируя старшие биты, можно просто менять направление отсчета. Это происходит благодаря управляющему входу Complement. При этом выдаваемое значение может быть как возрастающим, так и спадающим при одном физическом направлении вращения оси. Так как информация, записанная в ключе Грея, имеет исключительно кодированный характер, который не несет реальных числовых данных, то перед дальнейшей работой требуется предварительно преобразовать его в обычную бинарную форму записи. Осуществляется это с помощью специального преобразователя - декодера Грей-Бинар. Данное устройство легко реализуется на элементарных логических элементах как аппаратным, так и программным способом.

Код Грея-Экспресс

Стандартный одношаговый ключ Грей подходит для решений, которые представлены в виде чисел, два. В случаях, где необходимо реализовывать иные решения, из такой формы записи вырезают и используют только средний участок. В результате сохраняется одношаговость ключа. Однако в таком коде началом числового диапазона не является нуль. Он смещается на заданное значение. В процессе обработки данных от генерируемых импульсов отнимают половину разницы между начальным и редуцированным разрешением.

Представление дробного числа в двоичном ключе с фиксированной запятой

В процессе работы приходится оперировать не только целыми цифрами, но и дробными. Такие числа можно записывать с помощью прямых, обратных и дополнительных кодов. Принцип построения упомянутых ключей такой же, как и у целых. До сих пор мы считали, что двоичная запятая должна находиться справа от младшего разряда. Но это не так. Она может располагаться и слева от старшего разряда (в таком случае в качестве переменной можно записывать исключительно дробные числа), и посередине переменной (можно записывать смешанные значения).

Представление двоичного кода с плавающей запятой

Такая форма применяется для записи либо наоборот - очень малых. В качестве примера можно привести межзвездные расстояния или размеры атомов и электронов. При вычислении таких значений пришлось бы применять двоичный код с очень большой разрядностью. Однако нам нет необходимости учитывать космические расстояние с точностью до миллиметра. Поэтому форма записи с фиксированной запятой в данном случае неэффективна. Для отображения таких кодов используется алгебраическая форма. То есть число записывается как мантисса, умноженная на десять в степени, отображающей нужный порядок числа. Следует знать, что мантисса не должна быть больше единицы, а после запятой не должен записываться ноль.

Считается, что двоичное исчисление было изобретено в начале 18-го века математиком из Германии Готфридом Лейбницем. Однако, как недавно открыли ученые, задолго до полинезийского острова Мангареву использовали данный вид арифметики. Несмотря на то что колонизация практически полностью уничтожила оригинальные системы исчисления, ученые восстановили сложные двоичные и десятичные виды счета. Кроме того, ученый Когнитивист Нуньес утверждает, что кодирование двоичным кодом применялось в древнем Китае еще в 9-м веке до н. э. Другие древние цивилизации, например, индейцы майя, также использовали сложные комбинации десятичных и бинарных систем для отслеживания временных интервалов и астрономических явлений.


Греческая Грузинская
Эфиопская
Еврейская
Акшара-санкхья Другие Вавилонская
Египетская
Этрусская
Римская
Дунайская Аттическая
Кипу
Майяская
Эгейская
Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 −1 + 0 * 2 −2 + 1 * 2 −3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.
  • На фронтоне здания (бывшего Вычислительного Центра СО АН СССР) в Новосибирском Академгородке присутствует двоичное число 1000110, равное 70 10 , что символизирует дату постройки здания (

Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

Подсчет в двоичном формате

В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

Почему компьютеры используют двоичные файлы

Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

Вот схема типичного транзистора:

По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

Почему только двоичная система

Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

Двоичный код - это подача информации путем сочетания символов 0 или 1. Порою бывает очень сложно понять принцип кодирования информации в виде этих двух чисел, однако мы постараемся все подробно разъяснить.

Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде , открывается незамысловатая истина - бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид - 01010100, E - 01000101 и буква X - 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

Перевод натурального числа десятичной системы счисления в двоичную систему.

Чтобы перевести числа из десятичной системы счисления в двоичную пользуются "алгоритмом замещения", состоящим из такой последовательности действий:

1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет - 0.

2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя - 0.

4. В этот момент считается, что двоичный код готов.

Для примера переведем в двоичную систему число 7:

1. 7: 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

2. 3: 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

3. 1: 2 = 0.5. Снова выбираем 1 по тому же принципу.

4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код - 111.

Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот - перевести число из двоичной в десятичную.

Перевод числа двоичной системы в десятичную.

Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x - порядковое число двоичного кода, а y - степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

Немного из истории двоичной системы счисления.

Принято считать, что впервые двоичную систему предложил Готфрид Вильгельм Лейбниц, который считал систему полезной в сложных математических вычислениях и науке. Но по неким данным, до его предложения о двоичной системе счисления, в Китае появилась настенная надпись, которая расшифровывалась при использовании двоичного кода . На надписи были изображены длинные и короткие палочки. Предполагая, что длинная это 1, а короткая палочка - 0, есть доля вероятности, что в Китае идея двоичного кода существовала многим ранее его официального открытия. Расшифровка кода определила там только простое натуральное число, однако это факт, который им и остается.

Binary Converter/Encoder

Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

Answers to Questions

How to convert a number in binary?

To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

How to convert a text in binary?

Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

Example: AZ is 65,90 () so 1000001,1011010 in binary

Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

How to translate binary

The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

What is a bit?

A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

What is 1"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1.

Example: 0111 becomes 1000, so 7 becomes -7

What is 2"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

Example: 0111 becomes 1001

Ask a new question

Source code

dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on



gastroguru © 2017