Часы с частотой кварца более миллиона герц. Прецизионные часы реального времени Maxim. Особенности выбора и эксплуатации часовых кварцев

В этой статье поговорим об устройстве кварцевых часов и кварцевом резонаторе. Возможно, это будет довольно сложная тема для понимания. Прошу заметить, что в статье рассматривается принцип работы кварцевых часов не на примере существующего механизма а на примитивной абстрактной и грубой модели, показывающей только суть работы большинсва электронных и кварцевых часов.
В этой статье хочется развеять неточности касательно устройства схемы кварцевых часов, которые я встречал на других ресурсах, но об этом чуть ниже.

Рассмотрим для примера самый простейший кварцевый механизм, он состоит из:

  1. Электронный блок с контроллером и кварцевым резонатором
  2. Элемент питания (на фото отсутствует)
  3. Шаговый электродвигатель (катушка статор и ротор с постоянным магнитом)
  4. Шестереночный привод стрелок

Тут кажется все просто, электронный блок подает электрический импульс на катушки статора и ротор делает оборот равный одной секунде. Но как же электронный блок «понимает», что прошло время крутить ротор.

Рассмотрим подробнее работу схему простейшего электронного блока кварцевых часов, он состоит из кварцевого резонатора (зеленый прямоугольник) и микроконтроллера (красный квадрат).

Теперь остановимся подробнее на принципе работы и устройстве кварцевого резонатора.

На фото вскрытый кварцевый резонатор, К сожалению у меня не получилось вскрыть, не повредив кварц, который чаще всего используется в наручных часах.

Работа кварцевого резонатора основана на пьезоэлектрическом эффекте.

Суть пьезоэлектрического эффекта — это генерация ЭДС пьезоэлектриком при сдавливание или растяжения (вибрации) твердого тела (пьезоэлектрика) и наоборот при подаче напряжения пьезоэлектрик будет сдавливаться или расширяться. Важно заметить, такой эффект происходит только в момент сжатия или растяжения.

Любой кварцевый резонатор состоит из монокристалла кварца вырезанным определенным образом и с закрепленными на нем металическими пластинами к которым подведены контакты. Конкретно в часах используются резонаторы с плоским кристаллом в форме камертона (в виде буквы «Y» или «U») с прикрепленными на плоскостях металическими пластинами к которым подключены выводы. Сам кварц диэлектрик — то есть электрический ток он не проводит.

А теперь переходим к сути работы этого компонента. Бытует мнение, что кварцевый резонатор сам генерирует постоянную частоту, при подаче постоянного тока. Это не так, на самом деле все несколько сложнее.

Как говорилось выше, пьезоэлектрический эффект возникает только в момент сжатия или растяжения пьезоэлектрика. К примеру если кратковременно подать электрический заряд на выводы на кварцевого резонатора то кристалл кварца сожмется (ЭДС). Но в тот момент, как кварц будет обратно разжиматься он создаст противоположный по полярности (противоЭДС) заряд на выводах, конечно гораздо меньший чем был подан изначально. Т.Е произойдет одно колебание. Колебаний может быть несколько, важно то, что именно в этом случае (если нет подпитки электрозаряда из вне) они будут гармонически затухающими. Все это происходит за очень короткий момент времени. Это примерно тоже самое, что и удар по камертону. Кристал кварца может колебаться только с одной частотой, независимо от амплитуды.

Резонанс

Что бы колебания кварца были постоянные а не затухающие, нужно обеспечить постоянную внешнюю подпитку этих колебаний, например электрическим током определенной частоты.

А теперь переходим к тому, почему резонатор называется резонатором. У самого кристалла кварца есть своя частота механических колебаний. Как я уже приводил пример выше с камертоном. У него тоже есть своя механическая частота, то есть неважно, как его ударили, он будет выдавать звучание на одной и той же ноте (частоте). С кварцем все то же самое. Если подать на выводы электрический ток какой либо частоты (в разумных пределах) кварц будет механически колебаться (в этот раз уже постоянно в отличии от кратковременного заряда) только с определенной своей (резонансной) частотой, генерируя ЭДС и противоЭДС. Но если на выводы кварца подать ток именно той частоты на которой резонирует кварц, то потребление электричества которое превращается в работу (в колебания кварца) будет минимально в отличие от других частот. Грубо говоря кварц пропустит через себя все частоты кроме своей резонансной, при которой резко увеличится сопротивление. Все это нам напоминает работу колебательного контура, но кварц отличается гораздо лучшей добротностью.

Микроконтроллер

Одна из задач микроконтроллера поддержания частоты на выводах кварца при которой он резонирует опираясь на сопротивление при определенной частоте.

Т.Е Микроконтроллер синхронизируется с кварцем а так как частота кварца известна то и известно сколько прошло времени за определенное количество колебаний кварца. Чаще всего частота кварца используемого в часах равна 32 768 гц. При такой частоте можно обеспечить хорошие показатели в точности измерение времени.

Рассказываем об основных принципах работы кварцевого механизма в наручных часах


Изображение: multi-master.ru

Думается, всем более-менее понятно принципиальное устройство механических часов. Конечно, скорее менее, чем более, но основа ясна: источник энергии - пружина - воздействует на колесо , частота колебаний последнего определяется спиралью, колебания передаются на узел , а за ним следует передача, она же - зубчатые колеса (шестеренки), приводящие в действие стрелки.

На самом деле все неимоверно сложно, но принцип именно таков. Главное, что все это можно увидеть глазами. И даже пощупать руками. Ну, хотя бы виртуально.

А вот кварцевые часы - как построены они? Там ведь не все можно увидеть и тем более пощупать. Однако если разобраться, то в них все проще. Итак, по порядку.


Схема работы простого кварцевого механизма (с секундной стрелкой на отметке “6 часов”). Изображение: Encyclopedia Britannica

Батарейка


Батарейка (на примере механизма ETA Flatline 210.001). Изображение: eta.ch

Источник энергии - батарейка. Энергия не механическая, как в случае пружины, а электрическая. Тем не менее все равно энергия. Батарейка может быть “таблеткой”, а может, например, солнечной. Это лишь детали.

Кварц


Генератор с кварцевым резонатором (на примере механизма ETA Flatline 210.001). Изображение: eta.ch

Колебательная система - генератор с кварцевым резонатором, или сокращенно кварц.

Ток, вырабатываемый батарейкой, заставляет кристалл кварца колебаться (пьезоэлектрический эффект). Этот кристалл - аналог спирали - настраивают на определенную частоту колебаний, чаще всего 32 768 герц Это примерно в десять тысяч раз больше, чем число колебаний баланса в обыкновенных механических часах . С такой частотой выдает импульсы генератор - аналог баланса.


Микропроцессор / двоичный счетчик (на примере механизма ETA Flatline 210.001). Изображение: eta.ch

32 768 - это 2 в 15-й степени, что важно, поскольку в схеме присутствует также простейший двоичный счетчик, он же делитель, на выходе из которого частота снижется до 1 герца - до секундного такта.

Электродвигатель


Шаговый электродвигатель (на примере механизма ETA Flatline 210.001). Изображение: eta.ch

С этой частотой в 32 768 герц - раз в секунду - импульсы подаются на шаговый электродвигатель, который является аналогом спуска.

Казалось-бы, банальное дело, запустить часовой кварц. Какие могут быть проблемы? Есть микроконтроллер и две его ножки, которые специально предназначены для подключения кварца. Есть часовой кварц. Припаять кварц – дело двух секунд. Еще минута нужна для того, чтобы добавить пару строк инициализации таймера в программу. Вот вроде и все. НО, после того как я три дня запускал этот долбанный часовой кварц, я понял, что вопрос не так прост, как я думал.

А предыстория была такой. Друг попросил меня сделать ему простые часики, без наворотов, на 7-сегментных индикаторах. Плевое дело. Микроконтроллер был взят ATmega48 (умеет работать с часовым кварцем), быстренько написана программа, вытравлена печатка. После сборки часов и отладки программы (динамическая индикация, кнопки и т.д.) дошла очередь до часового кварца. До этих часиков я уже пару раз применял часовой кварц в своих проектах и ничего не предвещало беды:), но случилось непредвиденное – часовой кварц наотрез отказался запускаться. Вообще!
В попытках разобраться, что-же мешает заработать моему часовому кварцу я первым делом обратился к даташиту на микроконтроллер (ATmega48). Информации по асинхронному режиму и подключению таймера там оказалось очень мало. Дальше я начал искать решение проблемы на форумах. Вот тут было разнообразие решений и советов вплоть до ритуальных танцев с бубнами, что тоже не особо мне помогло. Пришлось путем проб и ошибок (не путать с «методом тыка»!) самому разбираться, что к чему. В результате героических потугов, наступания на какие только можно грабли и убитых трех дней, родился практический опыт подключения часового кварца, с которым я здесь и поделюсь.

Итак, какие грабли нас ожидают при запуске часового кварца?

1 Схемотехника.
1.1 Конденсаторы.
В даташите на микроконтроллер довольно пространно упоминается то, что к часовому кварцу должны быть подключены конденсаторы, а про их емкость вообще узнать трудно. Часовой кварц, скорей всего, заработает и без конденсаторов, но лучше их поставить это улучшит стабильность частоты и поможет кварцу быстрей запускаться.
Емкость конденсаторов должна быть в пределах 12-22 пФ.

1.2 Разводка дорожек под кварц.
Тут даташит и апноты дают нам четкие указания. Дорожки от ножек микроконтроллера до кварца должны быть минимальной длинны, земляная» дорожка для конденсаторов должна быть отдельной, то есть через нее не должны протекать посторонние токи (особенно это касается сильноточных и высокочастотных цепей).

1.3 Корпус часового кварца.
Железный корпус часового кварца обязательно припаяете к земле (к той к которой припаяны конденсаторы). Незаземленный корпус будет работать как антенна, внося искажения в работу кварца, ухудшая точность хода Ваших часов.

1.4 Грязь на плате.
Часовой кварц довольно нежная штука и сопротивления в пару мегаом между ножками вполне хватит для его остановки. Как показала практика, жидкий флюс, если его плохо смыть, дает достаточное сопротивление, для того чтобы кварц не работал. После пайки тщательно вымойте плату. Очень часто во флюсах содержится кислота, что и дает проводимость между ножками. Для нейтрализации кислоты промойте плату слабым раствором соды (пищевой) и тщательно отмойте чистой водой.

2 Программирование.
2.1 Инициализация асинхронного режима таймера.

Для того чтобы таймер работал от часового кварца, его (таймер) необходимо перевести в асинхронный режим. Для перевода таймера (почти у всех микроконтроллеров это таймер 2) в этот режим нужно записать 1 в бит AS2. Но не все так просто, нужно соблюсти определенный алгоритм запуска. По даташиту процедура включения асинхронного режима для таймера 2 следующая:
1. Запретить прерывания от таймера/счетчика 2 — OCIE2x, TOIE2;
2. Переключить его в асинхронный режим 1 -> AS2;
3. Записать новые значения в регистры TCNT2, OCR2x и TCCR2x;
4. Дождаться сброса флагов TCN2UB, OCR2xUB и TCR2xUB;
5. Сбросить флаги прерываний таймера/счетчика 2;
6. Разрешить прерывания (если требуется).

Обязательно соблюдайте такую последовательность. Вот листинг правильной инициализации асинхронного режима таймера2.

/* запрещаем прерывания */ cli() ; /* 1. Запрещаем прерывания Timer/Counter2 обнуляя OCIE2х и TOIE2. */ TIMSK2 &= ~((1 << OCIE2A) | (1 << OCIE2B) | (1 << TOIE2) ) ; /* 2. Переводим Timer/Counter2 в асинхронный режим устанавливая AS2. */ ASSR = (1 << AS2) ; /* Даем немного времени для стабилизации работы генератора (можно опустить). */ _delay_ms(1000 ) ; /* 3. Записываем новые значения TCNT2, OCR2x, and TCCR2B. */ TCNT2 = 0 ; /* устанавливаем пределитель = 128 32.768 kHz / 128 / 256 = переполнение раз за секунду. */ TCCR2B |= (1 << CS22) | (1 << CS20) ; /* 4. Чтобы быть уверенным, что часы заработали ждем пока обнулятся биты: TCN2UB, OCR2AUB, OCR2BUB, TCR2AUB и TCR2BUB. */ while (ASSR & 0x1F ) ; /* 5. Обнуляем флаги прерываний Timer/Counter2. */ TIFR2 |= ((1 << OCF2A) | (1 << OCF2B) | (1 << TOV2) ) ; /* 6. Разрешаем прерывание по переполнению таймера 2 */ TIMSK2 |= (1 << TOIE2) ; /* разрешаем прерывания */ sei() ;

/* запрещаем прерывания */ cli(); /* 1. Запрещаем прерывания Timer/Counter2 обнуляя OCIE2х и TOIE2. */ TIMSK2 &= ~((1<

2.2 Пределитель таймера 2.
Для того, чтобы прерывания по переполнению таймера2 происходили раз в секунду, значение пределителя должно быть 128. (128пределитель*256переполнение=32768частота кварца).

2.3 Работа часов в режиме сна PowerSave.
Очень заманчиво в паузах между секундными прерываниями переводить микроконтроллер в режим сна, в этом случае ток микроконтроллера упадет до 6-7мкА. Для такого случая есть режим пониженного потребления PowerSave, в нем таймер2 продолжает работать от часового кварца и пробуждает микроконтроллер прерыванием. Алгоритм такого режима работы простой, после выхода из режима сна по прерыванию от таймера в процедуре обработки прерывания «тикаем» часами, выходим из прерывания и опять даем команду заснуть (SLEEP). Вот тут есть очень важный нюанс. Опять смотрим даташит на микроконтроллер в разделе режимов пониженного потребления и работы асинхронного режима. Для того чтобы таймер после пробуждения начал нормально функционировать и был способен вывести микроконтроллер из сна при следующем прерывании нужно до команды засыпания выждать определенное время. Для того, чтобы убедится в том что генератор работает нормально нужно сделать запись в любой регистр таймера, из тех, которые не нарушат работу часов (например в OCR2x) и дождаться сброса флагов готовности данного регистра (OCR2xUB). После того как флаг сбросился можно смело переводить микроконтроллер в режим сна.

/* Точка выхода с прерывания по переполнению таймера2 */ /* Записываем любое значения в OCR2A. */ OCR2A = 0; /* Дожидаемся пока обнулится OCR2AUB. */ while(ASSR & (1<

3 Разное.
3.1 Не используйте дешевые китайские кварцы (в особенности выпаянные со старых сломанных копеечных часов). Даже если они и заработают, точность у них будет никакая.

3.2 Ну и напоследок , имейте под рукой несколько разных кварцев, возможно, Ваш кварц не запускается по причине того, что он спален. Попробуйте его заменить.

Вот, вроде, и все грабли, по которым я потоптался, пока запускал часовой кварц. Или еще что-то добавить?


(Visited 9 508 times, 1 visits today)

В этом маленьком эссе с фотографиями, я покажу широкой общественности, как лечить довольно часто встречающуюся «болячку» цифровых электронных часов - неточный ход. Часы могут отставать или спешить и чаще всего на небольшие погрешности хода мы не обращаем внимания, но когда часы отстают на 5 (пять) минут в сутки, это начинает раздражать.
Готовы? Поехали!

Интро

Эти часы я купил для того, чтобы поностальгировать по старым советским временам, когда и солнце было зеленее и трава ярче… или наоборот?.. неважно! Главное, что радости не получилось - часы гнусно отставали. Более, чем на 5 минут в сутки. Надо лечить, подумал я.



Забегая вперёд, отмечу, что диспут я не открывал, сто рублей это не те деньги. Проблема не в продавце, который отправил некачественный товар. Проблема в товаре, который продавец проверить никак не может - не будет же китаец/китаянка сидеть и засекать точность хода?

Для лечения часов нам понадобится :

Обязательно
+ паяльник. желательно не сильно мощный, 25-40 ватт вполне достаточно. 60 уже будет многовато.
+ кварцевый резонатор на замену. продаётся или в китае или в любом радиомагазине. стоит недорого, называется «часовой кварц».
+ тонкая крестовая (phillips) отвёртка или тонкая плоская отвёртка. крестовая предпочтительнее.

Желательно
+ пинцет с острыми губками - забирать шурупчики (дада, корпус пластиковый, рама тоже пластиковая. везде шурупы)
+ хорошее освещение и стационарное увеличительное стекло или очки ювелира/часовщика, чтобы хорошо видеть Красную Шапочку часы.

Разбираем часы

Раскручиваем четыре шурупа, держащих заднюю крышку. Аккуратно снимаем крышку, снимаем пьезоэлектрический резонатор (пищалку). Пальцами пищалку не лапаем, держим за боковые грани и за металлическую основу.


Отмечаем, что защитной прокладки в часах нет, следовательно внутрь часов будет попадать вода и пот. Понимаем, что китайцы ради дешевизны экономят вообще на всём, значит и стекло скорее всего сидит на двухстороннем скотче и кнопки без резиновых сальников. Значит, часы надо будет снимать в непогоду и во время физической работы.

Вынимаем часы из корпуса.


Корпус, заднюю крышку, шурупчики задней крышки и пищалку убираем в сторону.

Выкручиваем четыре шурупа - три держат литиевую батарейку 2016, один держит лапку-пружину для подачи сигнала на пищалку.


Убираем это всё в сторону. Рассматриваем плату. Больше шурупчиков не видно, значит это хорошо.

Аккуратно пинцетом снимаем плату с пластиковой обоймы.


Внутри обоймы мы видим токопроводящую резинку, которая передаёт сигнал на ЖКИ и собственно сам ЖК индикатор.
Резинку пальцами не трогаем, ибо нефиг. Попадёт соринка или грязь, отвалится какой-нибудь сегмент на индикаторе и опять разбирать… нафиг надо…
В синей термоусадке - катушка, которая даёт звук. Трогать её тоже не надо. повредить проще простого, проводки там тоньше волоса.
А вот металлический цилиндрик на ножках и есть наш кварцевый резонатор, который надо менять.

Для замены кварца я решил использовать донорский кварц со старой материнской платы, которая сдохла лет десять назад и я её потихоньку растаскиваю на мелкую комплектуху.


Кварц тут несколько большего размера, чем в часах.
Вот для сравнения уже выпаянный кварц из материнки и часовая плата.


Прикладываем кварц к плате. Подходит. укладываем кварц в обойму, тоже подходит! Отлично! Меняем!

Для замены просто выпаиваем один кварц и впаиваем другой.
Полярности нет, никаких особенностей нет. Процедура проста и не требует особой квалификации.


Вуаля! кварц заменён. Выравниваем корпус кварца, чтобы он был чуть ниже платы и не касался батарейки.

Обратная сборка

Собираем механизм в обратной последовательности - плату ставим на обойму, там есть направляющие штырьки. На плату ставим батарейку, минусом вниз.


Надеваем сверху на батарейку контактный блок. В этих часах он одновременно и батарейку держит и является контактной группой для кнопок. Прикручиваем тремя шурупчиками. Потом отдельный контакт на пищалку. Тоже прикручиваем.

Переворачиваем блок и смотрим - часы должны запуститься. Если этого не произошло, значит или перевёрнута батарейка или не впаян кварц или он нерабочий или статикой убило плату:)
Ну а если всё заработало, аккуратно ставим плату в корпус часов, центруем её так, чтобы цифры были параллельно краю, потом устанавливаем пищалку обратно, прикручиваем крышку…

Ну вот и всё!
Мы победили большую проблему)))

За сутки часы не ушли ни вперёд ни назад, идут ровно и точно. Понаблюдаю ещё и потом отпишусь по поводу точности.

Надо сказать, что процедура замены кварца одинакова для всех кварцевых часов - цифровых, стрелочных. Но, надо помнить, что большинство китайских кварцевых часов собраны на пластиковых заклёпках, которые расплавлены «грибочками», т.е. фактически, разобрав часы, собрать их очень проблемно.
Ну и размер кварца также имеет значение - если бы кварц с материнки не подошёл бы по размеру, то пришлось бы искать другой, меньшего размера.

За рамками этой «мурзилки» осталась плёнка, которую китайцы не сняли с ЖКИ, когда ставили его в обойму. Я эту плёнку убрал и контрастность экрана несколько увеличилась. Плёнку почти не видно, но на моих часах она была.

UPD .
За прошедшие четверо суток, с момента замены кварца, часы убежали вперёд на две секунды. 15 секунд в месяц.
Для копеечных часов и бесплатного кварца, считаю результат удовлетворительным. Лично меня он вполне удовлетворяет)))
Можно, конечно, поискать на барахолках кварцевые часы за копейки, надрать оттуда кучу кварцев и экспериментировать с точностью… но это оставим перфекционистам и упоротым фрикам)))

В комментариях приведена рецептура более тонкой подстройки точности, путём впаивания миниатюрных керамических конденсаторов. Как альтернатива замене кварца - вполне жизнеспособно и здраво. Главное, чтобы было место, куда эти конденсаторы разместить. Ну и наличие оных…

И вообще, друзья, главное не обзор, главное комменты)))
Спасибо всем, за ценные идеи и различные дискуссии)))

Планирую купить +16 Добавить в избранное Обзор понравился +91 +166

gastroguru © 2017